Skip to main content

Retinal Dystrophies and Degenerations

  • Chapter
  • First Online:
Spectral Domain Optical Coherence Tomography in Macular Diseases

Abstract

Retinal dystrophies comprise of a broad group of disorders which affect the retina and often lead to significant vision loss. This group of inherited diseases is characterised by progressive photoreceptor loss. The underlying genetic defect has been identified in many of these conditions, leading to a better understanding of the pathogenesis and the possibility of novel therapy. The high resolution of spectral domain optical coherence tomography (SD-OCT) images allows detailed examination of the retinal structure in many diseases. Detailed examination by SD-OCT offers much better ability to correlate with symptoms and progression, compared to fundus examination alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade RE, Farah ME, Costa RA (2003) Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in best disease. Am J Ophthalmol 136:1179–1181

    Article  PubMed  Google Scholar 

  • Andreoli MT, Lim JI (2014) Optical coherence tomography retinal thickness and volume measurements in X-linked retinoschisis. Am J Ophthalmol 158:567–573

    Article  PubMed  Google Scholar 

  • Anmarkrud N (1979) Fundus fluorescein angiography in fundus flavimaculatus and Stargardt’s disease. Acta Ophthalmol (Copenh) 57:172–182

    Article  CAS  Google Scholar 

  • Apushkin MA, Fishman GA, Rajagopalan AS (2005) Fundus findings and longitudinal study of visual acuity loss in patients with X-linked retinoschisis. Retina 25:612–618

    Article  PubMed  Google Scholar 

  • Armstrong JD, Meyer D, Xu S et al (1998) Long-term follow-up of stargardt’s disease and fundus flavimaculatus. Ophthalmology 105:448–457

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N et al (2003) Adult-onset foveomacular vitelliform dystrophy: a study by optical coherence tomography. Am J Ophthalmol 135:362–367

    Article  PubMed  Google Scholar 

  • Benhamou N et al (2004) Adult-onset foveomacular vitelliform dystrophy with OCT 3. Am J Ophthalmol 138:294–296

    Article  PubMed  Google Scholar 

  • Bernauer W, Daicker B (1992) Bietti’s corneal-retinal dystrophy. A 16-year progression. Retina 12:18–20

    Article  CAS  PubMed  Google Scholar 

  • Berson EL et al (1985) Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 99:240–251

    Article  CAS  PubMed  Google Scholar 

  • Birch DG et al (2013) Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa. JAMA Ophthalmol 131:1143–1150

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird AC (1995) Retinal photoreceptor dystrophies LI. Edward Jackson Memorial Lecture. Am J Ophthalmol 119:543–562

    Article  CAS  PubMed  Google Scholar 

  • Boon CJ et al (2007a) Clinical and genetic heterogeneity in multifocal vitelliform dystrophy. Arch Ophthalmol 125:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Boon CJ et al (2007b) Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol 91:1504–1511

    Article  PubMed  PubMed Central  Google Scholar 

  • Brecher R, Bird AC (1990) Adult vitelliform macular dystrophy. Eye (Lond) 4:210–215

    Article  Google Scholar 

  • Bundey S, Crews SJ (1984) A study of retinitis pigmentosa in the City of Birmingham. I Prevalence. J Med Genet 21:417–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunker CH et al (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365

    Article  CAS  PubMed  Google Scholar 

  • Chen H et al (2013) Functional and clinical findings in 3 female siblings with crystalline retinopathy. Doc Ophthalmol 116:237–243

    Article  Google Scholar 

  • Cho SC et al (2013) Morphologic characteristics of the outer retina in cone dystrophy on spectral-domain optical coherence tomography. Korean J Ophthalmol 27:19–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung MM et al (2001) Visual outcome following subretinal hemorrhage in Best disease. Retina 21:575–580

    Article  CAS  PubMed  Google Scholar 

  • Chung H et al (2006) Optical coherence tomography in the diagnosis and monitoring of cystoid macular edema in patients with retinitis pigmentosa. Retina 26:922–927

    Article  PubMed  Google Scholar 

  • Cibis GW, Morey M, Harris DJ (1980) Dominantly inherited macular dystrophy with flecks (Stargardt). Arch Ophthalmol 98:1785–1789

    Article  CAS  PubMed  Google Scholar 

  • Coscas F et al (2014) Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration. Invest Ophthalmol Vis Sci 55:64–69

    Article  PubMed  Google Scholar 

  • Dhoot DS et al (2013) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97:66–69

    Article  PubMed  Google Scholar 

  • Duncker T et al (2014) Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 55:1471–1482

    Article  PubMed  PubMed Central  Google Scholar 

  • Eagle RC, Lucier AC, Bernardino VB et al (1980) Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study. Ophthalmology 87:1189–1200

    Article  PubMed  Google Scholar 

  • Ferrara DC et al (2010) Multimodal fundus imaging in best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 248:1377–1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Fishman GA (1978) Retinitis pigmentosa: visual loss. Arch Ophthalmol 96:1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Fishman GA (1985) Electrophysiology and inherited retinal disorders. Doc Ophthalmol 60:107–119

    Article  CAS  PubMed  Google Scholar 

  • Fishman GA, Anderson RJ, Lourenco P (1985) Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. Br J Ophthalmol 69:263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishman GA et al (1993) Visual acuity in patients with best vitelliform macular dystrophy. Ophthalmology 100:1665–1670

    Article  CAS  PubMed  Google Scholar 

  • Fong AM et al (2009) Bietti’s crystalline dystrophy in Asians: clinical, angiographic and electrophysiological characteristics. Int Ophthalmol 29:459–470

    Article  PubMed  Google Scholar 

  • Francis PJ (2006) Genetics of inherited retinal disease. J R Soc Med 99:189–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujinami K et al (2013a) A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol 155:1075–1088

    Article  PubMed  Google Scholar 

  • Fujinami K et al (2013b) A longitudinal study of Stargardt disease: quantitative assessment of fundus autofluorescence, progression, and genotype correlations. Invest Ophthalmol Vis Sci 54:8181–8190

    Article  PubMed  Google Scholar 

  • Fujinami K et al (2013c) Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol 156:487–501

    Article  CAS  PubMed  Google Scholar 

  • Gass JD (1974) A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc 72:139–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gass JD (1977) Stereoscopic atlas of macular diseases: diagnosis and treatment. Mosby Inc., St. Louis

    Google Scholar 

  • Gerber S, Rozet JM, Bonneau D et al (1995) A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet 56:396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goura P, Carr RE (1964) Electrophysiological studies in early retinitis pigmentosa. Arch Ophthalmol 72:104–110

    Article  Google Scholar 

  • Gregori NZ, Lam BL, Gregori G et al (2013) Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis. Ophthalmology 120:169–174

    Article  PubMed  Google Scholar 

  • Grey RH, Blach RK, Barnard WM (1977) Bull’s eye maculopathy with early cone degeneration. Br J Ophthalmol 61:702–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover S, Fishman GA, Brown J Jr (1998) Patterns of visual field progression in patients with retinitis pigmentosa. Ophthalmology 105:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Hadden OB, Gass JD (1976) Fundus flavimaculatus and stargardt’s disease. Am J Ophthalmol 82:527–539

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara A, Yamamoto S, Ogata K et al (2011) Macular abnormalities in patients with retinitis pigmentosa: prevalence on OCT examination and outcomes of vitreoretinal surgery. Acta Ophthalmol 89:122–125

    Article  Google Scholar 

  • Hajali M, Fishman GA (2009) The prevalence of cystoid macular edema on optical coherence tomography in retinitis pigmentosa patients without cystic changes on fundus examination. Eye (Lond) 23:915–919

    Article  CAS  Google Scholar 

  • Hajali M, Fishman GA, Anderson RJ (2008) The prevalence of cystoid macular edema in retinitis pigmentosa patients determined by optical coherence tomography. Br J Ophthalmol 92:1065–1068

    Article  CAS  PubMed  Google Scholar 

  • Halford S, Liew G, Mackay DS et al (2014) Detailed phenotypic and genotypic characterization of Bietti crystalline dystrophy. Ophthalmology 121:1174–1184

    Article  PubMed  Google Scholar 

  • Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  PubMed  Google Scholar 

  • Holopigian K, Greenstein V, Seiple W et al (1996) Rates of change differ among measures of visual function in patients with retinitis pigmentosa. Ophthalmology 103:398–405

    Article  CAS  PubMed  Google Scholar 

  • Hood DC, Lin CE, Lazow MA et al (2009) Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50:2328

    Article  PubMed  Google Scholar 

  • Hood DC, Ramachandran R, Holopigian K et al (2011a) Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa. Biomed Opt Express 2:1106–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Hood DC, Lazow MA, Locke KG, Greenstein VC et al (2011b) The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Inui E, Oishi A, Oishi M et al (2014) Tomographic comparison of cone-rod and rod-cone retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 252:1065–1069

    Article  PubMed  Google Scholar 

  • Jackson H, Garway-Heath D, Rosen P et al (2001) Outcome of cataract surgery in patients with retinitis pigmentosa. Br J Ophthalmol 85:936–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson DM, Thompson HS, Bartley JA (1989) X-linked progressive cone dystrophy. Clinical characteristics of affected males and female carriers. Ophthalmology 96:885–895

    Article  CAS  PubMed  Google Scholar 

  • Kaiser-Kupfer MI, Chan CC, Markello TC et al (1994) Clinical biochemical and pathologic correlations in Bietti’s crystalline dystrophy. Am J Ophthalmol 118:569–582

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Joe SG, Lee DH et al (2013) Correlations between spectral-domain OCT measurements and visual acuity in cystoid macular edema associated with retinitis pigmentosa SD-OCT measurements and visual acuity in RP with CME. Invest Ophthalmol Vis Sci 54:1303–1309

    Article  PubMed  Google Scholar 

  • Kojima H, Otani A, Ogino K et al (2012) Outer retinal circular structures in patients with Bietti crystalline retinopathy. Br J Ophthalmol 96:390–393

    Article  PubMed  Google Scholar 

  • Krill AE, Deutman AF, Fishman M (1973) The cone degenerations. Doc Ophthalmol 35:1–80

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Hirami Y, Hata M et al (2014) Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa. Clin Ophthalmol 8:435

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima LH, Sallum JM, Spaide RF (2013) Outer retina analysis by optical coherence tomography in cone-rod dystrophy patients. Retina 33:1877–1880

    Article  PubMed  Google Scholar 

  • Lois N, Holder GE, Fitzke FW et al (1999) Intrafamilial variation of phenotype in Stargardt macular dystrophy-Fundus flavimaculatus. Invest Ophthalmol Vis Sci 40:2668–2675

    CAS  PubMed  Google Scholar 

  • Mansour AM, Uwaydat SH, Chan CC (2007) Long-term follow-up in Bietti crystalline dystrophy. Eur J Ophthalmol 17:680–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall J (1988) Pathologic findings and putative mechanisms in retinitus pigmentosa. In: Heckenlively JR (ed) Retinitis pigmentosa. Lippincott, Philadelphia

    Google Scholar 

  • Mauldin WM, O’Connor PS (1981) Crystalline retinopathy (Bietti’s tapetoretinal degeneration without marginal corneal dystrophy). Am J Ophthalmol 92:640–646

    Article  CAS  PubMed  Google Scholar 

  • Michaelides M, Hunt DM, Moore AT (2003) The genetics of inherited macular dystrophies. J Med Genet 40:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelides M, Hunt DM, Moore AT (2004a) The cone dysfunction syndromes. Br J Ophthalmol 88:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelides M, Aligianis IA, Ainsworth JR et al (2004b) Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci 45:1975–1982

    Article  PubMed  Google Scholar 

  • Mohler CW, Fine SL (1981) Long-term evaluation of patients with Best’s vitelliform dystrophy. Ophthalmology 88:688–692

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Akimoto M, Ooto S et al (2008) Association between abnormal autofluorescence and photoreceptor disorganization in retinitis pigmentosa. Am J Ophthalmol 145:687–694

    Article  PubMed  Google Scholar 

  • Nakamura M, Ito S, Terasaki H et al (2001) Japanese X-linked juvenile retinoschisis: conflict of phenotype and genotype with novel mutations in the XLRS1 gene. Arch Ophthalmol 119:1553–1554

    CAS  PubMed  Google Scholar 

  • Noble KG, Scher BM, Carr RE (1978) Polymorphous presentations in vitelliform macular dystrophy: subretinal neovascularisation and central choroidal atrophy. Br J Ophthalmol 62:561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi A, Ogino K, Nakagawa S et al (2013) Longitudinal analysis of the peripapillary retinal nerve fiber layer thinning in patients with retinitis pigmentosa. Eye (Lond) 27:597–604

    Article  CAS  Google Scholar 

  • Ponjavic V, Eksandh L, Andréasson S et al (1999) Clinical expression of Best’s vitelliform macular dystrophy in Swedish families with mutations in the bestrophin gene. Ophthalmic Genet 20:251–257

    Article  CAS  PubMed  Google Scholar 

  • Puche N, Querques G, Benhamou N et al (2010) High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy. Br J Ophthalmol 94:1190–1196

    Article  CAS  PubMed  Google Scholar 

  • Querques G, Leveziel N, Benhamou N et al (2006) Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br J Ophthalmol 90:1157–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Querques G, Angulo Bocco MC, Soubrane G et al (2008) Intravitreal ranibizumab (Lucentis) for choroidal neovascularization associated with vitelliform macular dystrophy. Acta Ophthalmol 86:694–695

    Article  PubMed  Google Scholar 

  • Querques G, Zerbib J, Santacroce R et al (2009a) Functional and clinical data of Best vitelliform macular dystrophy patients with mutations in the BEST1gene. Mol Vis 15:2960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Querques G, Regenbogen M, Soubrane G et al (2009b) High-resolution spectral domain optical coherence tomography findings in multifocal vitelliform macular dystrophy. Surv Ophthalmol 54:311–316

    Article  PubMed  Google Scholar 

  • Querques G, Prato R, Coscas G et al (2009c) In vivo visualization of photoreceptor layer and lipofuscin accumulation in stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography. Clin Ophthalmol 3:693

    Article  PubMed  PubMed Central  Google Scholar 

  • Querques G, Forte R, Querques L et al (2011) Natural course of adult-onset foveomacular vitelliform dystrophy: a spectral-domain optical coherence tomography analysis. Am J Ophthalmol 152:304–313

    Article  PubMed  Google Scholar 

  • Ripps H, Noble KG, Greenstein VC et al (1987) Progressive cone dystrophy. Ophthalmology 94:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Robson AG, Saihan Z, Jenkins SA et al (2006) Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol 90:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson AG, Webster AR, Michaelides M et al (2010) Cone dystrophy with supernormal rod electroretinogram: a comprehensive genotype/phenotype study including fundus autofluorescence and extensive electrophysiology. Retina 30:51–62

    Article  PubMed  Google Scholar 

  • Rosenthal R, Bakall B, Kinnick T et al (2006) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20:178–180

    CAS  PubMed  Google Scholar 

  • Rossi S, Testa F, Li A et al (2013) Clinical and genetic features in Italian Bietti crystalline dystrophy patients. Br J Ophthalmol 97:174–179

    Article  PubMed  Google Scholar 

  • Rotenstreich Y, Fishman GA, Anderson RJ (2003) Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology 110:1151–1158

    Article  PubMed  Google Scholar 

  • Sadowski B, Zrenner E (1997) Cone and rod function in cone degenerations. Vision Res 37:2303–2314

    Article  CAS  PubMed  Google Scholar 

  • Sahel J, Bonnel S, Mrejen S et al (2010) Retinitis pigmentosa and other dystrophies. Dev Ophthalmol 47:160–167

    Article  PubMed  Google Scholar 

  • Saito W, Yamamoto S, Hayashi M et al (2003) Morphological and functional analyses of adult onset vitelliform macular dystrophy. Br J Ophthalmol 87:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena S, Mishra N, Meyer CH (2012) Three-dimensional spectral domain optical coherence tomography in Stargardt disease and fundus flavimaculatus. J Ocul Biol Dis Infor 5:13–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Schatz P, Bitner H, Sander B et al (2010) Evaluation of macular structure and function by OCT and electrophysiology in patients with vitelliform macular dystrophy due to mutations in BEST1. Invest Ophthalmol Vis Sci 51:4754–4765

    Article  PubMed  Google Scholar 

  • Sen P, Ray R, Ravi P (2011) Electrophysiological findings in Bietti’s crystalline dystrophy. Clin Exp Optom 94:302–308

    Article  PubMed  Google Scholar 

  • Simunovic MP, Moore AT (1998) The cone dystrophies. Eye (Lond) 12:553–565

    Article  Google Scholar 

  • Sohn EH, Francis PJ, Duncan JL et al (2009) Phenotypic variability due to a novel Glu292Lys variation in exon 8 of the BEST1 gene causing best macular dystrophy. Arch Ophthalmol 127:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Tsunenari T, Yau W et al (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 99:4008–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tantri A, Vrabec TR, Cu-Unjieng A et al (2004) X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol 49:214–230

    Article  PubMed  Google Scholar 

  • Thorburn W, Nordstrom S (1978) EOG in a large family with hereditary macular degeneration. (Best’s vitelliform macular dystrophy) identification of gene carriers. Acta Ophthalmol 56:455–464

    Article  CAS  Google Scholar 

  • Toto L, Carpineto P, Parodi MB et al (2013) Spectral domain optical coherence tomography and in vivo confocal microscopy imaging of a case of Bietti’s crystalline dystrophy. Clin Exp Optom 96:39–45

    Article  PubMed  Google Scholar 

  • Triolo G, Pierro L, Parodi MB et al (2013) Spectral domain optical coherence tomography findings in patients with retinitis pigmentosa. Ophthalmic Res 50:160–164

    Article  PubMed  Google Scholar 

  • Urrets-Zavalía JA, Venturino JP, Mercado J et al (2006) Macular and extramacular optical coherence tomography findings in X-linked retinoschisis. Ophthalmic Surg Lasers Imaging 38:417–422

    Google Scholar 

  • vanHuet RA, Estrada-Cuzcano A, Banin E et al (2013) Clinical characteristics of rod and cone photoreceptor dystrophies in patients with mutations in the C8orf37 gene. Invest Ophthalmol Vis Sci 54:4683–4690

    Article  CAS  Google Scholar 

  • Vincent A, Robson AG, Neveu MM et al (2013) A phenotype–genotype correlation study of X-linked retinoschisis. Ophthalmology 120:1454–1464

    Article  PubMed  Google Scholar 

  • Vine AK, Schatz H (1980) Adult-onset foveomacular pigment epithelial dystrophy. Am J Ophthalmol 89:680–691

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi T, Sawa M, Gomi F et al (2010) Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol 88:e177–e183

    Article  PubMed  Google Scholar 

  • Wiznia RA, Perina B, Noble KG (1981) Vitelliform macular dystrophy of late onset. Br J Ophthalmol 65:866–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Ying L, Lin P et al (2013) Optical coherence tomography for multifocal vitelliform macular dystrophy. Optom Vis Sci 90:94–99

    Article  PubMed  Google Scholar 

  • Yang HS, Lee JB, Yoon YH et al (2014) Correlation between spectral-domain OCT findings and visual acuity in X-linked retinoschisis OCT characteristics of juvenile retinoschisis. Invest Ophthalmol Ves Sci 55:3029–3036

    Article  Google Scholar 

  • Yeoh J, Rahman W, Chen F et al (2010) Choroidal imaging in inherited retinal disease using the technique of enhanced depth imaging optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248:1719–1728

    Article  PubMed  Google Scholar 

  • Yin H, Jin C, Fang X et al (2014) Molecular analysis and phenotypic study in 14 Chinese families with Bietti crystalline dystrophy. PLoS One 9:e94960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu J, Ni Y, Keane PA et al (2010) Foveomacular schisis in Juvenile X-linked retinoschisis: an optical coherence tomography study. Am J Ophthalmol 149:973–978

    Article  PubMed  Google Scholar 

  • Zahlava J, Lestak J, Karel I (2014) Optical coherence tomography in progressive cone dystrophy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:628–634

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemmy Cheung MBBS, FRCOphth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Tan, A.C.S., Cheung, G. (2017). Retinal Dystrophies and Degenerations. In: Meyer, C., Saxena, S., Sadda, S. (eds) Spectral Domain Optical Coherence Tomography in Macular Diseases. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3610-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3610-8_24

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3608-5

  • Online ISBN: 978-81-322-3610-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics