Skip to main content

Prolactin and Somatostatin Responses to Antidepressant Therapy

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Neuropeptides have been implicated in the physiology and pathophysiology of stress responses and therefore may play an important role in the pathogenesis of affective disorders such as major depressive disorder (MDD). The data presented in this chapter demonstrate the role of prolactin (PRL) and somatostatin (STT) in the pathology and pharmacotherapy of MDD, focusing particularly on the response to antidepressant treatment, and compare the available data with the results obtained in our laboratory using in vitro model (HEK293 cells line) and the well-validated chronic mild stress (CMS) animal model of MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arancibia S, Epelbaum J, Boyer R, Assenmacher I. In vivo release of somatostatin from rat median eminence after local K+ infusion or delivery of nociceptive stress. Neurosci Lett. 1984;50(1–3):97–102.

    Article  CAS  PubMed  Google Scholar 

  2. Arancibia S, Rage F, Graugés P, Gómez F, Tapia-Arancibia L, Armario A. Rapid modifications of somatostatin neuron activity in the periventricular nucleus after acute stress. Exp Brain Res. 2000;134(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  3. Bakowska JC, Morrell JI. Atlas of the neurons that express mRNA for the long form of the prolactin receptor in the forebrain of the female rat. J Comp Neurol. 1997;386:161–77.

    Article  CAS  PubMed  Google Scholar 

  4. Baragli A, Alturaihi H, Watt HL, Abdallah A, Kumar U. Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2: co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell Signal. 2007;19(11):2304–16.

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from rodents about prolactin in humans? Endocr Rev. 2008;29:1–41.

    Article  CAS  PubMed  Google Scholar 

  6. Bernichtein S, Touraine P, Goffin V. New concepts in prolactin biology. J Endocrinol. 2010;206(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  7. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–68.

    Article  CAS  PubMed  Google Scholar 

  8. Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield Jr HJ. The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res. 1992;572:117–25.

    Article  CAS  PubMed  Google Scholar 

  9. Bravo JA, Dinan TG, Cryan JF. Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain. Front Mol Neurosci. 2014;10:7–24.

    Google Scholar 

  10. Butler RK, White LC, Frederick-Duus D, Kaigler KF, Fadel JR, Wilson MA. Comparison of the activation of somatostatin- and neuropeptide Y-containing neuronal populations of the rat amygdala following two different anxiogenic stressors. Exp Neurol. 2012;238(1):52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buysse DJ, Tu XM, Cherry CR, Begley AE, Kowalski J, Kupfer DJ, Frank E. Pretreatment REM sleep and subjective sleep quality distinguish depressed psychotherapy remitters and nonremitters. Biol Psychiatry. 1999;45(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  12. Chesselet MF, Reisine TD. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. J Neurosci. 1983;3(1):232–6.

    CAS  PubMed  Google Scholar 

  13. Cleare AJ, Murray RM, O’Keane V. Assessment of serotonergic function in major depression using d-fenfluramine: relation to clinical variables and antidepressant response. Biol Psychiatry. 1998;44:555–61.

    Article  CAS  PubMed  Google Scholar 

  14. Coker F, Taylor D. Antidepressant-induced hyperprolactinaemia. Incidence, mechanisms and management. CNS Drugs. 2010;24:563–74.

    Article  CAS  PubMed  Google Scholar 

  15. Deecher D, Andree TH, Sloan D, Schechter LE. From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology. 2008;33:3–17. Review.

    Article  PubMed  Google Scholar 

  16. Depue RA, Arbisi P, Krauss S, Iacono WG, Leon A, Muir R, Allen J. Seasonal independence of low prolactin concentration and high spontaneous eye blink rates in unipolar and bipolar II seasonal affective disorder. Arch Gen Psychiatry. 1990;47:356–64.

    Article  CAS  PubMed  Google Scholar 

  17. Dorshkind K, Horseman ND. Anterior pituitary hormones, stress, and immune system homeostasis. Bioessays. 2001;23:288–94. Review.

    Article  CAS  PubMed  Google Scholar 

  18. Drago F. Prolactin and sexual behavior: a review. Neurosci Biobehav Rev. 1984;8:433–9.

    Article  CAS  PubMed  Google Scholar 

  19. Drago F, Pulvirenti L, Spadaro F, Pennisi G. Effects of TRH and prolactin in the behavioral despair (swim) model of depression in rats. Psychoneuroendocrinology. 1990;15(5–6):349–56.

    Article  CAS  PubMed  Google Scholar 

  20. Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry. 1999;46:1375–87.

    Article  CAS  PubMed  Google Scholar 

  21. Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC. Neurotransmitter switching in the adult brain regulates behavior. Science. 2013;340(6131):449–53.

    Article  CAS  PubMed  Google Scholar 

  22. Emiliano AB, Fudge JL. From galactorrhea to osteopenia: rethinking serotonin-prolactin interactions. Neuropsychopharmacology. 2004;29(5):833–46.

    Article  CAS  PubMed  Google Scholar 

  23. Engin E, Stellbrink J, Treit D, Dickson CT. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience. 2008;157(3):666–76.

    Article  CAS  PubMed  Google Scholar 

  24. Engin E, Treit D. Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology (Berl). 2009;206(2):281–9.

    Article  CAS  Google Scholar 

  25. Faron-Górecka A, Kuśmider M, Kolasa M, Zurawek D, Gruca P, Papp M, Szafran K, Solich J, Pabian P, Romańska I, Antkiewicz-Michaluk L, Dziedzicka-Wasylewska M. Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Res. 2014;1555:48–59.

    Article  CAS  PubMed  Google Scholar 

  26. Faron-Górecka A, Kuśmider M, Solich J, Kolasa M, Szafran K, Zurawek D, Pabian P, Dziedzicka-Wasylewska M. Involvement of prolactin and somatostatin in depression and the mechanism of action of antidepressant drugs. Pharmacol Rep. 2013;65:1640–6.

    Article  PubMed  Google Scholar 

  27. Fava GA, Fava M, Kellner R, Serafini E, Mastrogiacomo I. Depression hostility and anxiety in hyperprolactinemic amenorrhea. Psychother Psychosom. 1981;36:122–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ferone D. Somatostatin and dopamine receptors. Tumori. 2010;96(5):802–5.

    PubMed  Google Scholar 

  29. Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000;80:1523–631. Review.

    CAS  PubMed  Google Scholar 

  30. Fujikawa T, Soya H, Tamashiro KL, Sakai RR, McEwen BS, Nakai N, Ogata M, Suzuki I, Nakashima K. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat. Endocrinology. 2004;145:2006–13.

    Article  CAS  PubMed  Google Scholar 

  31. Fujikawa T, Soya H, Yoshizato H, Sakaguchi K, Doh-Ura K, Tanaka M, Nakashima K. Restraint stress enhances the gene expression of prolactin receptor long form at the choroid plexus. Endocrinology. 1995;136:5608–13.

    CAS  PubMed  Google Scholar 

  32. Galdiero M, Pivonello R, Grasso LF, Cozzolino A, Colao A. Growth hormone, prolactin, and sexuality. J Endocrinol Invest. 2012;35:782–94.

    Article  CAS  PubMed  Google Scholar 

  33. Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol. 2008;23(7):571–85. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Graeff FG, Guimaraes FS, DeAndrade TG, Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav. 1996;54:129–41.

    Article  CAS  PubMed  Google Scholar 

  35. Grattan DR, Kokay IC. Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol. 2008;20(6):752–63.

    Article  CAS  PubMed  Google Scholar 

  36. Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, Tseng GC, Lewis DA, Sibille E. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17:1130–42.

    Article  CAS  PubMed  Google Scholar 

  37. Herzog CJ, Czéh B, Corbach S, Wuttke W, Schulte-Herbrüggen O, Hellweg R, Flügge G, Fuchs E. Chronic social instability stress in female rats: a potential animal model for female depression. Neuroscience. 2009;159:982–92.

    Article  CAS  PubMed  Google Scholar 

  38. Ignacak A, Kasztelnik M, Sliwa T, Korbut RA, Rajda K, Guzik TJ. Prolactin—not only lactotrophin. A “new” view of the “old” hormone. J Physiol Pharmacol. 2012;63:435–43. Review.

    CAS  PubMed  Google Scholar 

  39. Izquierdo-Claros RM, Boyano-Adanez MC, Larsson C, Gustavsson L, Arilla E. Acute effects of D1- and D2-receptor agonist and antagonist drugs on somatostatin binding, inhibition of adenylyl cyclase activity and accumulation of inositol 1,4,5-trisphosphate in the rat striatum. Mol Brain Res. 1997;47(1–2):99–107.

    Article  CAS  PubMed  Google Scholar 

  40. Jaroenporn S, Nagaoka K, Ohta R, Watanabe G, Taya K. Direct effects of prolactin on adrenal steroid release in male Hatano high-avoidance (HAA) rats may be mediated through Janus kinase 2 (Jak2) activity. J Reprod Dev. 2007;53:887–93.

    Article  CAS  PubMed  Google Scholar 

  41. Kessler RC. Epidemiology of women and depression. J Affect Disord. 2003;74:5–13.

    Article  PubMed  Google Scholar 

  42. Kirby LG, Allen AR, Lucki I. Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res. 1995;682:189–96.

    Article  CAS  PubMed  Google Scholar 

  43. Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides. 2013;47:401–19.

    Article  CAS  PubMed  Google Scholar 

  44. Kreiss DS, Lucki I. Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther. 1994;269:1268–79.

    CAS  PubMed  Google Scholar 

  45. Kuśmider M, Faron Górecka A, Żurawek D, Gaska M, Gruca P, Papp M, Dziedzicka-Wasylewska M. Alterations in somatostatin binding sites in brains of rats subjected to chronic mild stress. Eur Neuropsychopharmacol. 2011;21(2):S132.

    Article  Google Scholar 

  46. Leatherman ME, Ekstrom RD, Corrigan M, Carson SW, Mason G, Golden RN. Central serotonergic changes following antidepressant treatment: a neuroendocrine assessment. Psychopharmacol Bull. 1993;29:149–54.

    CAS  PubMed  Google Scholar 

  47. Lennartsson AK, Jonsdottir IH. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology. 2011;36:1530–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lesch KP, Mayer S, Disselkamp-Tietze J, Hoh A, Wiesmann M, Osterheider M, Schulte HM. 5-HT1A receptor responsivity in unipolar depression. Evaluation of ipsapirone-induced ACTH and cortisol secretion in patients and controls. Biol Psychiatry. 1990;28:620–8.

    Article  CAS  PubMed  Google Scholar 

  49. Malone KM, Thase ME, Mieczkowski T, Myers JE, Stull SD, Cooper TB, Mann JJ. Fenfluramine challenge test as a predictor of outcome in major depression. Psychopharmacol Bull. 1993;29:155–61.

    CAS  PubMed  Google Scholar 

  50. Martí O, Armario A. Anterior pituitary response to stress: time-related changes and adaptation. Int J Dev Neurosci. 1998;16:241–60.

    Article  PubMed  Google Scholar 

  51. Michelsen KA, Schmitz C, Steinbusch HW. The dorsal raphe nucleus–from silver stainings to a role in depression. Brain Res Rev. 2007;55:329–42.

    Article  PubMed  Google Scholar 

  52. Molchan SE, Lawlor BA, Hill JL, Martinez RA, Davis CL, Mellow AM, Rubinow DR, Sunderland T. CSF monoamine metabolites and somatostatin in Alzheimer’s disease and major depression. Biol Psychiatry. 1991;29(11):1110–8.

    Article  CAS  PubMed  Google Scholar 

  53. Murgatroyd CA, Nephew BC. Effects of early life social stress on maternal behavior and neuroendocrinology. Psychoneuroendocrinology. 2013;38:219–28.

    Article  CAS  PubMed  Google Scholar 

  54. Nanda SA, Qi C, Roseboom PH, Kalin NH. Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. Genes Brain Behav. 2008;7(6):639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nilsson A, Stroth N, Zhang X, Qi H, Fälth M, Sköld K, Hoyer D, Andrén PE, Svenningsson P. Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects. Neuropharmacology. 2012;62(1):347–57.

    Article  CAS  PubMed  Google Scholar 

  56. Noble R. Depression in women. Metab Clin Exp. 2005;54:49–52.

    Article  CAS  PubMed  Google Scholar 

  57. Pallis E, Thermos K, Spyraki C. Chronic desipramine treatment selectively potentiates somatostatin-induced dopamine release in the nucleus accumbens. Eur J Neurosci. 2001;14(4):763–7.

    Article  CAS  PubMed  Google Scholar 

  58. Pallis E, Vasilaki A, Fehlmann D, Kastellakis A, Hoyer D, Spyraki C, Thermos K. Antidepressants influence somatostatin levels and receptor pharmacology in brain. Neuropsychopharmacology. 2009;34(4):952–63.

    Article  CAS  PubMed  Google Scholar 

  59. Polkowska J, Wankowska M. Effects of maternal deprivation on the somatotrophic axis and neuropeptide Y in the hypothalamus and pituitary in female lambs. The histomorphometric study. Folia Histochem Cytobiol. 2010;48(2):299–305.

    Article  PubMed  Google Scholar 

  60. Porter RJ, Mulder RT, Joyce PR. Baseline prolactin and L-tryptophan availability predict response to antidepressant treatment in major depression. Psychopharmacology (Berl). 2003;165:216–21.

    Article  CAS  Google Scholar 

  61. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000;288(5463):154–7.

    Article  CAS  PubMed  Google Scholar 

  62. Rodriguez-Sanchez MN, Puebla L, Lopez-Sanudo S, Rodriguez-Martin E, Martin-Espinosa A, Rodriguez-Pena MS, Juarranz MG, Arilla E. Dopamine enhances somatostatin receptor-mediated inhibition of adenylate cyclase in rat striatum and hippocampus. J Neurosci Res. 1997;48(3):238–48.

    Article  CAS  PubMed  Google Scholar 

  63. Roky R, Obál Jr F, Valatx JL, Bredow S, Fang J, Pagano LP, Krueger JM. Prolactin and rapid eye movement sleep regulation. Sleep. 1995;18:536–42.

    CAS  PubMed  Google Scholar 

  64. Roky R, Valatx JL, Jouvet M. Effect of prolactin on the sleep-wake cycle in the rat. Neurosci Lett. 1993;156:117–20.

    Article  CAS  PubMed  Google Scholar 

  65. Rubinow DR. Cerebrospinal fluid somatostatin and psychiatric illness. Biol Psychiatry. 1986;21(4):341–65.

    Article  CAS  PubMed  Google Scholar 

  66. Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331–59.

    Article  CAS  PubMed  Google Scholar 

  67. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  68. Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ. Brain serotonin 1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry. 2000;57:174–80.

    Article  CAS  PubMed  Google Scholar 

  69. Seggie JA, Brown GM. Stress response patterns of plasma corticosterone, prolactin, and growth hormone in the rat, following handling or exposure to novel environment. Can J Physiol Pharmacol. 1975;53:629–37.

    Article  CAS  PubMed  Google Scholar 

  70. Sibille E, Morris HM, Kota RS, Lewis DA. GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol. 2011;14:721–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stein DJ. Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry. CNS Spectr. 2008;13:561–5.

    Article  PubMed  Google Scholar 

  72. Szafran K, Łukasiewicz S, Faron-Górecka A, Kolasa M, Kuśmider M, Solich J, Dziedzicka-Wasylewska M. Antidepressant drugs promote the heterodimerization of the dopamine D2 and somatostatin Sst5 receptors fluorescence in vitro studies. Pharmacol Rep. 2012;64(5):1253–8.

    Article  CAS  PubMed  Google Scholar 

  73. Szafran K, Faron-Górecka A, Kolasa M, Kuśmider M, Solich J, Zurawek D, Dziedzicka-Wasylewska M. Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: a focus on depression. Pharmacol Rep. 2013;65(6):1498–505.

    Article  CAS  PubMed  Google Scholar 

  74. Tabata H, Kobayashi M, Ikeda JH, Nakao N, Saito TR, Tanaka M. Characterization of multiple first exons in murine prolactin receptor gene and the effect of prolactin on their expression in the choroid plexus. Mol Endocrinol. 2012;48:169–76.

    Article  CAS  Google Scholar 

  75. Thermos K, Radke J, Kastellakis A, Anagnostakis Y, Spyraki C. Dopamine-somatostatin interactions in the rat striatum: an in vivo microdialysis study. Synapse. 1996;22(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  76. Torner L, Neumann ID. The brain prolactin system: involvement in stress response adaptations in lactation. Stress. 2002;5:249–57. Review.

    Article  CAS  PubMed  Google Scholar 

  77. Torner L, Karg S, Blume A, Kandasamy M, Kuhn HG, Winkler J, Aigner L, Neumann ID. Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci. 2009;29(6):1826–33.

    Article  CAS  PubMed  Google Scholar 

  78. Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann ID. Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci. 2001;21:3207–14.

    CAS  PubMed  Google Scholar 

  79. Tripp A, Kota RS, Lewis DA, Sibille E. Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2011;42(1):116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vega C, Moreno-Carranza B, Zamorano M, Quintanar-Stéphano A, Méndez I, Thebault S, Martínez de la Escalera G, Clapp C. Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol. 2010;299:1701–8.

    Article  CAS  Google Scholar 

  81. Vera-Lastra O, Jara LJ, Espinoza LR. Prolactin and autoimmunity. Autoimmun Rev. 2002;1(6):360–4. Review.

    Article  CAS  PubMed  Google Scholar 

  82. Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J. Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol. 2008;286:75–87.

    Article  CAS  PubMed  Google Scholar 

  83. Viollet C, Vaillend C, Videau C, Bluet-Pajot MT, Ungerer A, L’Héritier A, Kopp C, Potier B, Billard J, Schaeffer J, Smith RG, Rohrer SP, Wilkinson H, Zheng H, Epelbaum J. Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci. 2000;12(10):3761–70.

    Article  CAS  PubMed  Google Scholar 

  84. Walker TL, Vukovic J, Koudijs MM, Blackmore DG, Mackay EW, Sykes AM, Overall RW, Hamlin AS, Bartlett PF. Prolactin stimulates precursor cells in the adult mouse hippocampus. PLoS One. 2012;7(9):e44371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Walsh RJ, Slaby FJ, Posner BI. A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology. 1987;120:1846–50.

    Article  CAS  PubMed  Google Scholar 

  86. Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in major depression: a review. Int J Neurosci. 2010;120:455–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Faron-Górecka PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Faron-Górecka, A., Szafran-Pilch, K. (2016). Prolactin and Somatostatin Responses to Antidepressant Therapy. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_39

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics