Skip to main content

Inverse Dynamics and Feet-Terrain Collision Model for Optimal Distribution of the Contact Forces During Crab Motion of a Hexapod Robot

  • Conference paper
CAD/CAM, Robotics and Factories of the Future

Abstract

The present study deals with the kinematics, dynamics and feet-ground contact modeling of a hexapedal robotic system. Feet-ground interaction generates contact forces, which play a very important role for locomotion on varying terrains. In this study, the constrained inverse dynamical model is formulated as a coupled dynamics problem using Newton-Euler approach with implicit constraints in Cartesian coordinates. The contact force distribution in the feet during interaction with the terrain is considered to be a constrained optimization problem. For a more realistic locomotion analysis, impact of feet-tip with the terrain is considered, which is assumed to be governed by a compliant normal contact force model. The paper also investigates the optimal feet forces’ distributions under body forces, total power consumption etc. without any external disturbance during the robot’s locomotion with wave-crab gait (duty factor = ½).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennani, M., & Giri, F. (1996). Dynamic modelling of a four-legged robot. Journal of Intelligent and Robotic Systems, 17(4), 419–428.

    Article  Google Scholar 

  • Bibalan, P. T., & Featherstone, R. (2009). A study of soft contact models in simulink. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA). December 2–4, 2009, Sydney, Australia.

    Google Scholar 

  • Brach, R. (2007). Mechanical impact dynamics: rigid body collisions. Brach Engineering, LLC.

    Google Scholar 

  • Cheng, F. T., & Orin, D. E. (1990). Efficient algorithm for optimal force distribution the Compact-dual LP method. IEEE Transactions on Robotics and Automation, 6(2), 178–187.

    Article  Google Scholar 

  • Ding, L., Gao, H., Deng, Z., Song, J., Liu, Y., Liu, G., & Iagnemma, K. (2013). Foot–terrain interaction mechanics for legged robots: Modeling and experimental validation. International Journal of Robotics Research, 32(13), 1585–1606.

    Article  Google Scholar 

  • Erden, M. S., & Leblebicioglu, K. (2007). Torque distribution in a six-legged robot. IEEE Transactions on Robotics, 23(1), 179–186.

    Article  Google Scholar 

  • Gilardi, G., & Sharf, I. (2002). Literature survey of contact dynamics modelling. Mechanism and Machine Theory, 37(10), 1213–1239.

    Article  MathSciNet  Google Scholar 

  • Goldsmith, W. (2001). Impact: The theory and physical behaviour of colliding solids. Courier Dover Publications.

    Google Scholar 

  • Hahn, H. (2003). Rigid body dynamics of mechanisms 2 (1st ed.). Berlin: Springer.

    Book  Google Scholar 

  • Hunt, K. H., & Crossley, F. R. E. (1975). Coeffcient of restitution interpreted as damping in vibroimpact. ASME Journal of Applied Mechanics, 42(2), 440–445.

    Article  Google Scholar 

  • Johnson, K. L. (1985). Contact mechanics. Cambridge University Press. ISBN: 978-0521347969.

    Google Scholar 

  • Kar, D. C., Issac, K. K., & Jayarajan, K. (2001). Minimum energy force distribution for a walking robot. Journal of Robotic Systems, 18(2), 47–54.

    Article  Google Scholar 

  • Kerr, J., & Roth, B. (1986). Analysis of multifingered hands. International Journal of Robotics Research, 4(4), 3–17.

    Google Scholar 

  • Kumar, V., & Waldron, K. J. (1988). Gait analysis for walking machines for omnidirectional locomotion on uneven terrain. In A. Morecki, G. bianchi & K. Kectzior (Eds.), Proceedings of 7th CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy (pp. 37–62).

    Google Scholar 

  • Lankarani, H. M., & Nikravesh, P. E. (1990). A contact force model with hysteresis damping for impact analysis of multibody systems. Journal of Mechanical Design, 112(3), 369–376.

    Article  Google Scholar 

  • Mahapatra, A., Bhavanibhatla, K., Roy, S. S., & Pratihar, D. K. (2015). Energy-efficient inverse dynamic model of a hexapod robot. In Proceedings of International Conference on Robotics, Automation, Control and Embedded Systems, (RACE2015), Chennai, India.

    Google Scholar 

  • Marhefka, D. W., & Orin, D. E. (1999). A compliant contact model with nonlinear damping for simulation ofrobotic systems. IEEE Transactions on Systems, Man and Cybernetics, Part A, 29(6), 566–572.

    Article  Google Scholar 

  • Roy, S. S., & Pratihar, D. K. (2011). Dynamic modeling and energy consumption analysis of crab walking of a six-legged robot. In IEEE Conference on Technologies for Practical Robot Applications (TePRA) (pp. 82–87).

    Google Scholar 

  • Zhang, C. D., & Song, S. M. (1990). Stability analysis of wave-crab gaits of a quadruped. Journal of Robotic Systems, 7(2), 243–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibendu Shekhar Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahapatra, A., Roy, S.S., Pratihar, D.K. (2016). Inverse Dynamics and Feet-Terrain Collision Model for Optimal Distribution of the Contact Forces During Crab Motion of a Hexapod Robot. In: Mandal, D.K., Syan, C.S. (eds) CAD/CAM, Robotics and Factories of the Future. Lecture Notes in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2740-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2740-3_10

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2738-0

  • Online ISBN: 978-81-322-2740-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics