Skip to main content

Biomedical Applications of Silkworm Pupae Proteins

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

Silkworm is a biologically important and unique insect which engineer a structure called cocoon. Apart from extraction of silk fiber from cocoons, this complex fibrous protein membranous shell ensures the successful metamorphosis of the silkworm larvae to pupae and finally to silk moth. The pupae of mulberry and non-mulberry silkworms have been in consideration as new available source of high quality protein that contains all the essential amino acids required for human health. In recent years, research has been focused on various biomedical applications of silkworm pupae proteins. Pupae proteins are efficiently worked in wound dressings, hepatoprotective and antiapoptotic activity, antigenotoxicity, regulation of blood glucose and lipids, anticancer agent, etc. Therefore, silkworm pupae could be utilized as food supplement and its enormous proteins open the new dimension for biomedical science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fagoonee I (1983) Possible growth factors for chickens in silkworm pupae meal. Br Poult Sci 24(3):295–300

    Article  CAS  PubMed  Google Scholar 

  2. Mishra N, Hazarika NC, Narain K, Mahanta J (2003) Nutritive value of non-mulberry and mulberry silkworm pupae and consumption pattern in Assam. India Nutri Res 23(10):1303–1311

    Article  CAS  Google Scholar 

  3. Pereira NR, Ferrarese-Filho O, Matsushita M, De Souza NE (2003) Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. J Food Comp Anal 16(4):451–457

    Article  CAS  Google Scholar 

  4. Zhu LS (2004) Exploitation and utilization of the silkworm. Antheraea pernyi. North Seri 25(101):32–33

    CAS  Google Scholar 

  5. Zhou JH, Sun XB, Xu HB, Li YZ, Zhao JH (1996) Research progress on silkworm pupae. Spec Wild Econ Anim Pl Res 18(1):38–40

    Google Scholar 

  6. Huijuan Y, Zhonghua Z, Huarong Z, Ming C, Jianying L et al (2010) Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori). Amin Acids 38(5):1333–1342

    Article  Google Scholar 

  7. Meetali D, Dulal Chandra B, Dipali D, Rajlakshmi D (2014) Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis. Food Biosci 5:108–114

    Article  Google Scholar 

  8. Rao PU (1994) Chemical composition and nutritional evaluation of spent silkworm pupae. J Agric Food Chem 42:2201–2203

    Article  CAS  Google Scholar 

  9. Zhou J, Han D (2006) Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernys in China. J Food Comp Anal 19:850–853

    Article  CAS  Google Scholar 

  10. Zhou J, Han D (2006) Safety evaluation of protein of silkworm (Antheraea pernyi) pupae. Food Chem Toxi 44:1123–1130

    Article  CAS  Google Scholar 

  11. Longvah T, Mangthya K, Ramulun P (2011) Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem 128:400–403

    Article  CAS  PubMed  Google Scholar 

  12. Kim EJ, Rhee WJ, Park TH (2001) Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori. Biochem Biophys Res Commun 285:224–228

    Article  CAS  PubMed  Google Scholar 

  13. Kim EJ, Park HJ, Park TH (2003) Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph. Biochem Biophys Res Commun 308:523–528

    Article  CAS  PubMed  Google Scholar 

  14. Koo TY, Park JH, Park HH, Park TH (2009) Beneficial effect of 30Kc6 gene expression on production of recombinant interferon-β in serum-free suspension culture of CHO cells. Proc Biochem 44:146–153

    Article  CAS  Google Scholar 

  15. Wang Z, Park JH, Park HH, Tan WS, Park TH (2010) Enhancement of therapeutic monoclonal antibody production in CHO cells using 30Kc6 gene. Proc Biochem 45:1852–1856

    Article  CAS  Google Scholar 

  16. Wei Y, Huihui Y, Fudan T, Chen Z, Yanping Q, Zhang Y (2013) Protective effect of the silkworm protein 30kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL). PLOS ONE 8(6):e68746

    Google Scholar 

  17. Kwon MG, Kim DS, Lee JH, Park SW, Choo Y et al (2012) Isolation and analysis of natural compounds from silkworm pupae and effect of its extracts on alcohol detoxification. Entomol Res 42:55–62

    Article  CAS  Google Scholar 

  18. Cha J, Kim Y, Moon H, Cho Y (2012) Hepatoprotective effects on alcoholic liver disease of fermented silkworms with Bacillus subtilis and Aspergillus kawachii. Int J Food Sci Nut 63(5):537–547

    Article  CAS  Google Scholar 

  19. Shi JM, Xie CX, Zhang WJ, Shen JM (1990) Effects of silkworm on serum protein, haemoglobin, glutamate-pyruvate transaminase and glucose. J Mod Appl Pharm 7(2):1–3

    Google Scholar 

  20. Yang HX, Zhu XR, Lu HS (2002) Research progress on application of silkworm pupa in medical science. Bull Sci Tech 18(4):318–322

    Google Scholar 

  21. Jian C, Xiang-Fu W, Yao-Zhou Z (2006) Expression, purification and characterization of human GM-CSF using silkworm pupae (Bombyx mori) as a bioreactor. J Biotech 123:236–247

    Article  Google Scholar 

  22. Zhang M, Haga A, Sekiguchi H, Hirano S (2000) Structure of insect chitin isolated from beetle larva cuticle abd silkworm (Bombix mori) pupa exuvia. Int J Biol Macromole 27:99–105

    Article  CAS  Google Scholar 

  23. Kaizer L, Boyd NF, Kriukov V, Tritchler D (1989) Fish consumption and breast cancer risk: an ecological study. Nutr Cancer 12:61–68

    Article  CAS  PubMed  Google Scholar 

  24. Hursting SD, Thornquist M, Henderson MM (1990) Types of dietary fat and the incidence of cancer at five sites. Prev Med 19:242–253

    Article  CAS  PubMed  Google Scholar 

  25. Caygill CP, Charlett A, Hill MJ (1996) Fat, fish, fish oil and cancer. Br J Cancer 74:159–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sasaki S, Horacsek M, Kesteloot H (1993) An ecological study of the relationship between dietary fat intake and breast cancer mortality. Prev Med 22:187–202

    Article  CAS  PubMed  Google Scholar 

  27. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    Article  CAS  PubMed  Google Scholar 

  28. Datta PK, Basu PS, Datta TK (1984) Isolation and characterization of Vicia faba lectin affinity purified on chitin column. Prep Biochem 14:373–387

    CAS  PubMed  Google Scholar 

  29. Marguerite R (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  Google Scholar 

  30. Austin PR (1977) Brine J. Chitin films and fibers. US Patent 4,029,727

    Google Scholar 

  31. Hirano S (2001) Wet-spinning and applications of functional fibers based on chitin and chitosan. In: Arguelles-Monal W (ed). Natural and synthetic polymers: challenges and perspectives. Macromol Symp, vol 168. Weinheim, Germany, Wiley-VCH Verlag GmbH, pp 21–30

    Google Scholar 

  32. Yusof NL, Wee A, Lim LY, Khor E (2003) Flexible chitin films as potential wound-dressing materials: wound model studies. J Biomed Mater Res A 66A:224–232

    Article  CAS  Google Scholar 

  33. Hudson SM (1998) Applications of chitin and chitosan as fiber and textile chemicals. In: Domard A, Roberts GAF, Varum KM (eds) Advances in chitin science, vol 2. Lyon (France), Jacques Andre, pp 590–599

    Google Scholar 

  34. Kato Y, Onishi H, Machida Y (2003) Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol 4:303–309

    Article  CAS  PubMed  Google Scholar 

  35. Ito M, Matahira Y, Sakai K (1998) The application of chitin chitosan to bone filling materials, vol 4. Nippon Kichin, Kitosan Gakkai: Publ, Kichin, Kitosan Kenkyu, pp 142–143

    Google Scholar 

  36. Wattanathron J, Muchimapura S, Boosel A, Kongpa S, Kaewrueng W et al (2012) Silkworm pupae protect against Alzheimers disease. Am J Agric Bio Sci 7(3):330–336

    Article  Google Scholar 

  37. Harris WS, Ginsberg HN, Arunakul N et al (1997) Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk 4:385–391

    Article  CAS  PubMed  Google Scholar 

  38. Gavia MH, Couto RC, Oyama LM et al (2003) Diets rich in polyunsaturated fatty acids effect on hepatic metabolism in rats. Nutri 19:144–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkatesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Kumar, D., Dev, P., Kumar, R.V. (2015). Biomedical Applications of Silkworm Pupae Proteins. In: Kumar, D., R. Kundapur, R. (eds) Biomedical Applications of Natural Proteins. SpringerBriefs in Biochemistry and Molecular Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2491-4_3

Download citation

Publish with us

Policies and ethics