Skip to main content

Harnessing Genomics Through Phenomics

  • Chapter
  • First Online:
Phenomics in Crop Plants: Trends, Options and Limitations

Abstract

Plant genetics and genomics have revolutionized agricultural research, and a vast amount of genomics resources have been developed in crop plants. However, these genomics resources could not be utilized with their full potential in genetic improvement of crop plants especially for the improvement of complex quantitative traits related to biotic and abiotic stresses and the outcome is still far from satisfactory. Among several reasons, the lack of availability of precise and high-throughput phenotyping tools are cited as the major one, as poor phenotyping has led to poor results in gene/QTL discovery for genomics-assisted breeding applications. During the recent past, high-throughput precise phenotyping tools and techniques have been developed, which led to development of a number of phenomics platforms. These phenomics platforms can help us to collect high-quality accurate phenotyping data necessary for harnessing the potentiality of genomics resources through genetic dissection of complex quantitative traits including discovery of new gene/QTL, identification of gene function, and genomics selection. This chapter focuses on recent developments in the area of phenomics and provides an overview on the practical use of genomics through crop phenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding or yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false. Theor Appl Genet 109:419–424

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants; learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R (2010) Genome wide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627

    Article  Google Scholar 

  • Bernardo R, Yu JM (2007) Prospects for genome wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Bhattacharyya MK (2010) Map-based cloning of genes and QTL in soybean. In: Bilyeu K, Ratnaparkhe MB, Kole C (eds) Genetics, genomics, and breeding of soybean. Science Publishers, Enfield, pp 169–186

    Chapter  Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Dolors Serret M, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  PubMed  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed Central  PubMed  Google Scholar 

  • Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007) A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proc Natl Acad Sci U S A 104:8550–8555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douchkov D, Lueck S, Baum T, Seiffert U, Schweizer P (2012) High-throughput phenomics platform for interactions of barley with fungal pathogens. In: Plant & Animal Genome (PAG-XX), Conference 2012, San Diego, 14–18 Jan 2012, P0115

    Google Scholar 

  • Edmeades GO, McMaster GS, White JW (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Field Crop Res 90:5–18

    Article  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Finkel E (2009) With ‘phenomics’, plant scientists hope to shift breeding into overdrive. Science 325:380–381

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B, Simonneau T, Tardieu F (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635

    Article  PubMed  Google Scholar 

  • Gupta PK, Balyan HS, Gahlaut V, Kulwal P (2012) Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: status and prospects. Plant Breed Rev 36:85–168

    Google Scholar 

  • Gupta PK, Kulwal PL, Mir RR (2013a) QTL mapping: methodology and applications in cereal breeding. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht. doi:10.1007/978-94-007-6401-9_11

    Chapter  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2013b) Array-based high-throughput DNA markers and genotyping platforms for cereal genetics and genomics. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht. doi:10.1007/97894007640192

  • Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F (2011) HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform 12:148

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heslot N, Sorrells ME, Jannink JL, Yang HP (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Article  Google Scholar 

  • Ingram PA, Zhu J, Shariff A, Davis IW, Benfey PN, Elich T (2012) High-throughput imaging and analysis of root system architecture in Brachypodium distachyon under differential nutrient availability. Philos Trans R Soc Lond B Biol Sci 367:1559–1569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishizuka T, Tanabata T, Takano M, Shinomura T (2005) Kinetic measuring method of rice growth in tillering stage using automatic digital imaging system. Environ Control Biol 43:83–96

    Article  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jansen RC, Van Ooijen JM, Stam P, Lister C, Dean C (1995) Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  PubMed  Google Scholar 

  • Joosen RV, Ligterink W, Hilhorst HW, Keurentjes JJ (2009) Advances in genetical genomics of plants. Curr Genomics 10:540–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karkee M, Steward BL, Tang L, Aziz SA (2009) Quantifying sub-pixel signature of paddy rice field using an artificial neural network. Comput Electron Agric 65:65–76

    Article  Google Scholar 

  • Kearsey MJ, Farquhar AGL (1998) QTL analysis; where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Klukas C, Pape JM, Entzian A (2012) Analysis of high-throughput plant image data with the information system IAP. J Integr Bioinform 9:191

    PubMed  Google Scholar 

  • Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). Gen Genomics Triticeae 7:337–357

    Article  Google Scholar 

  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010) Cloning and characterization of a putative GS3 ortholog involved in Maize kernel development. Theor Appl Genet 120:753–763

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201

    Article  CAS  Google Scholar 

  • Mir RR, Varshney RK (2013) Future prospects of molecular markers in plants. In: Henry RJ (ed) Molecular markers in plants. Blackwell Publishing Ltd, Oxford, pp 169–190

    Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mir RR, Hiremath PJ, Riera-Lizarazu O, Varshney RK (2013) Evolving molecular marker technologies in plants: from RFLPs to GBS. In: Lübberstedt T, Varshney RK (eds) Diagnostics in plant breeding. Springer, Dordrecht, pp 229–247

    Chapter  Google Scholar 

  • Passioura JB (2010) Scaling up: the essence of effective agricultural research. Funct Plant Biol 37:585–591

    Article  Google Scholar 

  • Peleman JD, Voort JRV (2003) Breeding by design. Trends Plant Sci 7:330–334

    Article  Google Scholar 

  • Pieruschka R, Poorter H (2012) Phenotyping plants: genes, phenes and machines. Funct Plant Biol 39:813–820

    Article  Google Scholar 

  • Romer C, Burling K, Hunsche M, Rumpf T, Noga G, Plümer L (2011) Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines. Comput Electron Agric 79:180–188

    Article  Google Scholar 

  • Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F (2007) Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ 30:135–146

    Article  PubMed  Google Scholar 

  • Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance geneCtb1. Plant Sci 179:97–102

    Article  CAS  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sozzani R, Benfey P (2011) High-throughput phenotyping of multicellular organisms: finding the link between genotype and phenotype. Genome Biol 12:219

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanabata T, Shibaya T, Hori K, Ebana K, Yano M (2012) SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 160:1871–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Topp CN, Passcuzi ASI, Anderson JT, Lee CR, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelshbrunner H, Olds TM, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA 110:E1695–E1704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol. doi:10.3389/fphys.2012.00347

    PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: an overview. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol I, Genomics approaches and platforms. Springer, Dordrecht, pp 1–12

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 9:522–530

    Article  Google Scholar 

  • Varshney RK, Ribaut J-M, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Drayton MC, George J, Cogan NOI, Baillie RC, Kearney GA, Erb S, Wilkinson T, Bannan R, Forster JW, Smith KF (2010) Identification of genetic factors influencing salt stress tolerance in white clover (Trifolium repens L.) by QTL analysis. Theor Appl Genet 120:607–619

    Article  CAS  PubMed  Google Scholar 

  • Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F (2011) A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant Physiol 157:718–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yang LN, Peng L, Zhang LM, Zhang LL, Yang SS (2009) A prediction model for population occurrence of paddy stem borer (Scirpophaga incertulas), based on back propagation artificial neural network and principal components analysis. Comput Electron Agric 68:200–206

    Article  Google Scholar 

  • Yuan LP, Jun Z, Lu Y (2006) Impacts of QTL × environment interaction on genetic response to marker-assisted selection. Acta Genet Sin 33:63–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyazul Rouf Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mir, R.R. et al. (2015). Harnessing Genomics Through Phenomics. In: Kumar, J., Pratap, A., Kumar, S. (eds) Phenomics in Crop Plants: Trends, Options and Limitations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2226-2_18

Download citation

Publish with us

Policies and ethics