Skip to main content

Abstract

Adaptation to various ecosystems is important to all microbes for growth and survival. Pathogenic microbes, especially bacteria, have developed mechanisms of synchronised expression of virulence genes with increasing population density through quorum sensing, enabling their survival in various host organisms. Due to its direct significance to humans, quorum sensing has been studied in great detail in pathogens and has significantly contributed to our understanding of microbe-host interactions. During the course of evolution, fungi have developed ways to control competing bacterial populations that co-existed. One way they achieved this is by hampering the quorum-sensing signalling amongst bacteria. Several fungal quorum sensors, metabolites, mycotoxins and enzymes secreted or produced by fungi for their communication or in response to environment are known to act as quorum-sensing inhibitors (QSIs). Farnesol, farnesoic acid isolated from Candida albicans have shown inter-species and inter-kingdom inhibition to quorum-sensing signalling. Metabolites, such as patulin and penicillic acid have shown QSI activity against bacteria. Enzymes from Aspergillus niger, Trichoderma viride and Penicillium species, such as cellulases, proteases and amylases can be used to degrade bacterial biofilms. QSIs typically utilise three different strategies: (1) inhibiting the production of quorum-sensing molecules; (2) degrading the signalling molecules; and/or (3) blocking the receptors for signalling molecules. Fungal QSIs have been successfully tested under laboratory conditions to inhibit bacteria from forming biofilms on medical equipment and reduce spoilage of processed food products. They are also a promising agent to counter increasing antibiotic-resistance amongst bacteria. Apart from agriculture and waste water treatment, fungal QSIs have potential importance for pharmaceutical and food industries as antibiotic supplement and food preservatives, respectively. This chapter discusses these aspects in fungi with a view to emphasise the need for discovering and developing novel quorum-sensing inhibitors and their potential application in industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott SP (2002) Mycotoxins and indoor molds. Indoor Environ Connect 3(4):14–24

    Google Scholar 

  • Adak S, Upadrasta L, Kumar SPJ, Soni R, Banerjee R (2011) Quorum quenching – an alternative antimicrobial therapeutics. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz

    Google Scholar 

  • Adonizio A, Kong KF, Mathee K (2008) Inhibition of QS-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52:198–203

    PubMed  CAS  PubMed Central  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50:337–345

    PubMed  CAS  Google Scholar 

  • Alonso-Monge R, Román E, Arana DM, Pla J, Nombela C (2009) Fungi sensing environmental stress. Clin Microbiol Infect 15:17–19

    PubMed  CAS  Google Scholar 

  • Alspaugh JA, Cavallo LM, Perfect JR, Heitman J (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36:352–365

    PubMed  CAS  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:969–978

    Google Scholar 

  • Balaban N, Giacometti A, Cirioni O, Gov M, Hirshberg M, Koyfman N, Mathews HR, Nhan RT, Singh B, Uzeil O (2003) Use the quorum- sensing inhibitor RNA III- inhibiting peptide to prevent biofilm formation in vivo by drug resistant Staphylococcus epidermidis. J Infect Dis 187:625–630

    PubMed  CAS  Google Scholar 

  • Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchengiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum- sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bell-Pederson D, Dunlap JC, Loros JJ (1996) Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg2) gene. Mol Cell Biol 16:513–521

    Google Scholar 

  • Borges-Walmsley MI, Walmsley AR (2000) cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8:133–141

    PubMed  CAS  Google Scholar 

  • Borrego EJ, Kolomiets MV (2012) Lipid-mediated signalling between fungi and plants. In: Witzany G (ed) Biocommunication of fungi. Springer, Dordrecht

    Google Scholar 

  • Brilhante RSN, Valente LGA, Rocha MFG, Bandeira TJPG, Cordeiro RA, Lima RAC, Leite, JJG, Ribeiro JF, Pereira JF, Castelo-Branco DSCM, Sidrim JJC (2012) Sesquiterpene farnesol contributing to increased susceptibility to b-lactams in strains of Burkholderia pseudomallei. Antimicrob Agents Chemother. http://dx.doi.org/10.1128/AAC.05885-11

  • Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu ZY, Chen WS, Jiang YY (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589

    PubMed  CAS  PubMed Central  Google Scholar 

  • Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67:3703–3713

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cassola A, Parrot M, Silberstein S, Magee BB, Passeron S, Giasson L, Cantore ML (2004) Candida albicans lacking the gene encoding the regulatory subunit of protein kinase a displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryotic Cell 3:190–199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cerca N, Gomes F, Pereira S, Teixeira P, Oliveira R (2012) Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. BMC Res Notes 5:244

    PubMed  PubMed Central  Google Scholar 

  • Cheetham J, Smith DA, Dantas ADS, Doris KS, Patterson MJ, Bruce CR, Quinn J (2007) A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell 18:4603–4614

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen L, Wen Yu-mei (2011) The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci 3:66–73. doi:10.4248/IJOS11022

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101:5048–5052

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500. doi:10.3390/ijms140917477

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cho EJ, Oh JY, Chang HY, Yun JW (2006) Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 127:129–140

    PubMed  CAS  Google Scholar 

  • Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, Bae SH, Yun JW (2007) Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 75:1257–1265

    PubMed  CAS  Google Scholar 

  • Cloutier M, Castilla R, Bolduc N, Zelada A, Martineau P, Bouillon M, Magee BB, Passeron S, Giasson L, Cantore ML (2003) The two isoforms of the cAMP dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet Biol 38:133–141

    PubMed  CAS  Google Scholar 

  • Cordeiro RA, Nogueira GC, Brilhante RSN, Teixeira CEC, Mourão CI, Castelo-Branco D de Souza CM, Paiva MAN, Ribeiro JF, Monteiro AJ, Sidrim JJC, Rocha MFG (2012) Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet Microbiol 159:375–380

    Google Scholar 

  • Costerone JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Google Scholar 

  • Cotar AI (2013) Quorum sensing inhibitors as anti-pathogenic drugs in the fight against Pseudomonas aeruginosa infections. Clin Microbiol 2(4):e111. doi:10.4172/2327-5073.1000e111

    Google Scholar 

  • Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906

    PubMed  CAS  Google Scholar 

  • Dastager SG, Li WJ, Dayanand A, Tang SK, Tian XP, Zhi XY, Xu LH, Jiang CL (2006) Separation, identification and analysis of pigment (melanin) production in Streptomyces. Afr J Biotechnol 5:1131–1134

    CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. doi:10.1038/nrd1008

    PubMed  CAS  Google Scholar 

  • Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA (2008) Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 67:47–62

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dechant R, Peter M (2008) Nutrient signals driving cell growth. Curr Opin Cell Biol 20:678–687

    PubMed  CAS  Google Scholar 

  • Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80. doi:10.1016/j.tim.2009.12.008

    PubMed  CAS  Google Scholar 

  • Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6:e1000989. doi:10.1371/journal.ppat.1000989

    PubMed  PubMed Central  Google Scholar 

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258. doi:10.1016/j.mib.2011.03.004

    PubMed  Google Scholar 

  • Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM (2009) Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob 8:13. doi:10.1186/1476-0711-8-13

    PubMed  PubMed Central  Google Scholar 

  • Dohlman HG, Slessareva JE (2006) Pheromone signaling pathways in yeast. Sci Signal 364:cm6. doi:10.1126/stke.3642006cm6

    Google Scholar 

  • Dong Y-H, Zhang L-H (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109

    PubMed  CAS  Google Scholar 

  • Dumitru R, Hornby JM, Nickerson KW (2004) Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother 48:2350–2354

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eisman B, Alonso-Monge R, Román E, Arana D, Nombela C, Pla J (2006) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell 5:347–358

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fairn GD, MacDonald K, McMaster CR (2007) A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. J Biol Chem 282:4868–4874

    PubMed  CAS  Google Scholar 

  • Fernandes L, Araujo MAM, Amaral A, Reis VCB, Martins NF, Felipe MS (2005) Cell signalling pathways in Paracoccidioides brasiliensis- inferred from comparisons with other fungi. Genet Mol Res 4:216–231

    PubMed  CAS  Google Scholar 

  • Finch RG, Pritchard DI, Bycroft BW, Williams P, Stewart GS (1998) Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 42(5):569–571

    PubMed  CAS  Google Scholar 

  • Frazer J (2013) Accident of evolution allows fungi to thrive in our bodies. Scientific American Web Exclusive. http://www.scientificamerican.com/article/fungal-infection-accident-of-evolution-may-thrive-in-our-bodies. Accessed 11 May 2014

  • Frisvad JC, Thrane U, Filtenborg O (1998) Role and use of secondary metabolites in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York

    Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112(2):231–240. doi:10.1016/j.mycres.2007.08.018

    PubMed  CAS  Google Scholar 

  • Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, Edwards JE Jr (2002) Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44:61–72

    PubMed  CAS  Google Scholar 

  • García-Contreras R, Maeda T, Wood TK (2013) Resistance to quorum-quenching compounds. Appl Environ Microbiol 79(22):6840–6846. doi:10.1128/AEM.02378-13

    PubMed  PubMed Central  Google Scholar 

  • Gautam CK, Srivastav AK, Bind S, Madhav M, Shanthi V (2013) An insight into biofilm ecology and its applied aspects. Int J Pharm Pharm Sci 5(4):69–73

    Google Scholar 

  • Gomes FIA, Leite B, Teixeira P, Cerca N, Azeredo J, Oliveira R (2011a) Farnesol as antibiotics adjuvant in Staphylococcus epidermidis control in vitro. Am J Med Sci 341(3):191–195. doi:10.1097/MAJ.0b013e3181fcf138

    PubMed  Google Scholar 

  • Gomes FIA, Teixeira P, Cerca N, Azeredo J, Oliveira R (2011b) Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix. Curr Microbiol 63:354–359

    PubMed  CAS  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor–like Kinase involved in the perception of the bacterial elicitor Flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gould SE (2012) Fungi that steal genes from bacteria. Scientific American Blog. http://blogs.scientificamerican.com/lab-rat/2012/08/12/fungi-that-steal-genes-from-bacteria. Accessed 11 May 2014

  • Gow NAR (2009) Fungal morphogenesis: some like it hot. Curr Biol 19:621–629

    Google Scholar 

  • Hahn Berg IC, Kalfas S, Malmsten M, Arnebrant T (2001) Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur J Oral Sci 109:316–324

    Google Scholar 

  • Han T-L, Cannon RD, Villas-Bôas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48:747–763

    PubMed  CAS  Google Scholar 

  • Hazen KC, Cutler JE (1979) Autoregulation of germ tube formation by Candida albicans. Infect Immun 24:661–666

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hazen KC, Cutler JE (1983) Isolation and purification of morphogenic autoregulatory substance produced by Candida albicans. J Biochem 94:777–783

    PubMed  CAS  Google Scholar 

  • Henriques M, Martins M, Azeredo J, Oliveira R (2007) Effect of farnesol on Candida dubliniensis morphogenesis. Lett Appl Microbiol 44:199–205. doi:10.1111/j.1472-765X.2006.02044.x

    PubMed  CAS  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307. doi:10.1172/JCI200320074

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hentzer M, Eber L, Nielsen J, Givskov M (2003) Quorum sensing: a novel target for the treatment of biofilm infections. Biodrugs 17(4):241–250

    PubMed  CAS  Google Scholar 

  • Hisajima T, Maruyama N, Tanabe Y, Ishibashi H, Yamada T, Makimura K, Nishiyama Y, Funakoshi K, Oshima H, Abe S (2008) Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol 52:327–333. doi:10.1111/j.1348-0421.2008.00044.x

    PubMed  CAS  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5(4):613–619. doi:10.1128/EC.5.4.613-619

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hornby JM, Nickerson KW (2004) Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother 48:2305–2307

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson W (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hornby JM, Kebaara BW, Nickerson KW (2003) Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother 47:2366–2369

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW (2004) Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70:1356–1359

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jain A, Gupta Y, Agrawal R, Khare P, Jain SK (2007) Biofilms—a microbial life perspective: a critical review. Crit Rev Ther Drug Carr Syst 24(5):393–443

    CAS  Google Scholar 

  • Jangid K, Kong R, Patole MS, Shouche YS (2007) luxRI homologs are universally present in the genus Aeromonas. BMC Microbiol 7:93

    PubMed  PubMed Central  Google Scholar 

  • Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial biofilm. Appl Environ Microbiol 63:3724–3728

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245

    PubMed  CAS  Google Scholar 

  • Kalia VC, Wood TK, Kumar P (2013) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol. doi:10.1007/s00248-013-0316-y

    PubMed  Google Scholar 

  • Kaneko M, Togashi N, Hamashima H, Hirohara M, Inoue Y (2011) Effect of farnesol on mevalonate pathway of Staphylococcus aureus. J Antibiot 64:547–549

    PubMed  CAS  Google Scholar 

  • Kebaara BW, Langford ML, Navarathna DHMLP, Dumitru R, Nickerson K, Atkin AL (2008) Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot Cell 7:980–987

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koh C-L, Sam C-K, Yin W-F, Tan LY, Krishnan T, Chong YM, Chan K-G (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13:6217–6228. doi:10.3390/s130506217

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kügler S, Sebghati TS, Eissenberg LG, Goldman WE (2000) Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. PNAS 97(16):8794–8798

    PubMed  PubMed Central  Google Scholar 

  • Kumamoto CA (2002) Candida biofilms. Curr Opin Microbiol 5:608–611

    PubMed  CAS  Google Scholar 

  • Laffey SF, Butler G (2005) Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology 151(4):1073–1081. doi:10.1099/mic.0.27739-0

    PubMed  CAS  Google Scholar 

  • Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schröppel K (2001) RAS links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 42:673–687

    PubMed  CAS  Google Scholar 

  • Lee S-W, Han S-W, Sririyanum M, Park C-J, Seo Y-S, Ronald PC (2009) A Type I–secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853. doi:10.1126/science.1173438

    PubMed  CAS  Google Scholar 

  • Leeder AC, Palma-Guerrero J, Glass NL (2011) The social network: deciphering fungal language. Nat Rev Microbiol 9:440–451

    PubMed  CAS  Google Scholar 

  • Leng P, Lee PR, Wu H, Brown AJP (2001) Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol 183:4090–4093

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li B, Dong MS (2010) Inhibition effect of extract from Auricularia auricular on quorum sensing and biofilm formation of bacteria. Food Sci 31:140–143

    Google Scholar 

  • Lingappa BT, Lingappa Y (1969) Role of auto-inhibitors on mycelial growth and dimorphism of Glomerella cingulata. J Gen Microbiol 56:35–45

    PubMed  CAS  Google Scholar 

  • Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K (1969) Phenethyl alcohol and tryptophol: auto antibiotics produced by the fungus Candida albicans. Science 163:192–194

    PubMed  CAS  Google Scholar 

  • Liu P, Deng B, Long CA, Min X (2009) Effect of farnesol on morphogenesis in the fungal pathogen Penicillium expansum. Ann Microbiol 59:33–38

    CAS  Google Scholar 

  • Lung MY, Tsai JC, Huang PC (2010) Antioxidant properties of edible basidiomycete Phellinus igniarius in submerged cultures. J Food Sci 75(1):18–24. doi:10.1111/j.1750-3841.2009.01384.x

    Google Scholar 

  • Macko V, Staples RC, Gershon H, Renwick JA (1970) Self inhibitor of bean rust uredospores: methyl 3,4-dimethoxycinnamate. Science 170:539–540

    PubMed  CAS  Google Scholar 

  • Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR, Tomás M, Wood TK (2012) Quorum quenching quandary: resistance to anti virulence compounds. ISME J 6:493–501. doi:10.1038/ismej.2011.122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matson J (2011) Unwanted housemates: dishwashers provide habitat for “extremotolerant” fungi. Scientific American Blog. http://blogs.scientificamerican.com/observations/2011/06/21/unwanted-housemates-dishwashers-provide-habitat-for-extremotolerant-fungi. Assessed 11 May 2014

  • Mattmann ME, Blackwell HE (2010) Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem 75:6737–6746. doi:10.1021/j0101237e

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maximilien R, de Nys R, Holmström C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246

    Google Scholar 

  • Mohan SK, Srivastava T (2010) Microbial deterioration and degradation of polymeric materials. J Biochem Technol 2(4):210–215

    CAS  Google Scholar 

  • Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW (2005) Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol 71:4938–4940

    PubMed  CAS  PubMed Central  Google Scholar 

  • Navarathna DHMLP, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW (2005) Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 56:1156–1159

    PubMed  CAS  Google Scholar 

  • Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72(6):3805–3813. doi:10.1128/AEM.02765-05

    PubMed  CAS  PubMed Central  Google Scholar 

  • Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1:201–210. doi:10.1002/emmm.200900032

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oh K-B, Miyazawa H, Naito T, Matsuoka H (2001) Purification and characterization of an auto regulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci U S A 98:4664–4668

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orgaz B, Kivesb J, Pedregosa AM, Monistrol IF, Laborda F, Jośe CS (2006) Bacterial biofilm removal using fungal enzymes. Enzym Microb Technol 40:51–56

    CAS  Google Scholar 

  • Pammi M, Liang R, Hicks J, Barrish J, Versalovic J (2011) Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res 70:578–583

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pan JC, Ren DC (2009) Quorum sensing inhibitors: a patent review. Expert Opin Ther Patents 19:1581–1601

    CAS  Google Scholar 

  • Persson T, Hansen TH, Rasmussen TB, Skindersoe ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum sensing inhibitors derived from acylated homoserine lactones and natural product from garlic. Org Biomol Chem 3:253–262

    PubMed  CAS  Google Scholar 

  • Pitt JI (2000) Toxigenic fungi and mycotoxins. Br Med Bull 56(1):184–192

    PubMed  CAS  Google Scholar 

  • Rajesh PS, Rai RV (2013) Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatal Agric Biotechnol 2:120–124

    Google Scholar 

  • Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463. doi:10.1128/AEM.68.11.5459-5463

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rasch M, Andersen JB, Nielsen KF, Flodgaard LR, Christensen H, Givskov M, Gram L (2005) Involvement of bacterial quorum sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 71:3321–3330

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rasch M, Rasmussen TB, Andersen JB, Persson T, Nielsen J, Givskov M, Gram L (2007) Well-known quorum sensing inhibitors do not affect bacterial quorum sensing-regulated bean sprout spoilage. J Appl Microbiol 102:826–837. doi:10.1111/j.1365-2672.2006.03121.x

    PubMed  CAS  Google Scholar 

  • Rasmussen TB, Givskov M (2006a) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161. doi:10.1016/j.ijmm.2006.02.005

    PubMed  CAS  Google Scholar 

  • Rasmussen TB, Givskov M (2006b) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904. doi:10.1099/mic.0.28601-0

    PubMed  CAS  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005a) Screening for Quorum-Sensing Inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814. doi:10.1128/JB.187.5.1799-1814.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005b) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    PubMed  CAS  Google Scholar 

  • Rex E (2012) Invasive fungi wreak havoc on species worldwide [slide show]. Scientific American News. http://www.scientificamerican.com/article/fungi-wreak-havoc-across-species-globally-slide-show. Assessed 11 May 2014

  • Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4:911–919

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rocha CRC, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E (2001) Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643

    PubMed  CAS  PubMed Central  Google Scholar 

  • Román E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J (2009) The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res 9:942–955

    PubMed  Google Scholar 

  • San-Blas G, Travassos LR, Fries BC, Goldman DL, Casadevall A, Carmona AK, Barros TF, Puccia R, Hostetter MK, Shanks SG, Copping VM, Knox Y, Gow NA (2000) Fungal morphogenesis and virulence. Med Mycol 38(suppl 1):79–86

    Google Scholar 

  • Sato T, Watanabe T, Mikami T, Matsumoto T (2004) Farnesol, a morphogenetic auto regulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull 27:751–752

    PubMed  CAS  Google Scholar 

  • Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD (2006) Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59(3):753–764

    PubMed  CAS  Google Scholar 

  • Shiner EK, Rumbaugh KP, Williams SC (2005) Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29:935–947

    PubMed  CAS  Google Scholar 

  • Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA (2009) Farnesol induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53:2392–2401

    PubMed  CAS  PubMed Central  Google Scholar 

  • Silva D (2003) Ganoderma lucidum (Reishi) in cancer treatment. Integr Cancer Ther 2(4):358–364. doi:10.1177/1534735403259066

    Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    PubMed  CAS  Google Scholar 

  • Summers (2012) Bacteria talk, plants listen: the discovery of plant immune receptors, an interview with Pamela Ronald. Scientific American Blog. http://blogs.scientificamerican.com/guest-blog/2012/04/22/bacteria-talk-plants-listen-the-discovery-of-plant-immune-receptors-an-interview-with-dr-pamela-ronald. Assessed 11 May 2014

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    PubMed  CAS  Google Scholar 

  • Ueda M, KuboT MK, Nakamura K (2007) Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Appl Microbiol Biotechnol 74:331–338

    PubMed  CAS  Google Scholar 

  • Uroz S, Heinonsalo J (2008) Degradation of N -acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol 65:271–278. doi:10.1111/j.1574-6941.2008.00477.x

    PubMed  CAS  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Google Scholar 

  • Wachtel-Galor S, Tomlinson B, Benzie IFF (2004) Ganoderma lucidum (‘Lingzhi’), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Br J Nutr 91(2):263–269. doi:10.1079/BJN20041039

    PubMed  CAS  Google Scholar 

  • Weber K, Schulz B, Ruhnke M (2010) The quorum-sensing molecule E, E-farnesol- its variable secretion and its impact on the growth and metabolism of Candida species. Yeast 27:727–739

    PubMed  CAS  Google Scholar 

  • Witzany G (2010) Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 1(5):160–180

    PubMed  PubMed Central  Google Scholar 

  • Witzany G (2012) Introduction: key levels of biocommunication in fungi. In: Witzany G (ed) Biocommunication of fungi. Springer, Dordrecht

    Google Scholar 

  • Wong C-S, Koh C-L, Sam C-K, Chen J-W, Chong YM, Yin W-F, Chan K-G (2013) Degradation of bacterial quorum sensing signaling molecules by the microscopic yeast Trichosporon loubieri isolated from tropical wetland waters. Sensors 13:12943–12957. doi:10.3390/s131012943

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061

    PubMed  CAS  Google Scholar 

  • Yu RC, Pesce CG, Colman-Lerner A, Lok L, Pincus D, Serra E, Holl M, Benjamin K, Gordon A, Brent R (2008) Negative feedback that improves information transmission in yeast signalling. Nature 456:755–761

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu H, Sun SJ (2008) Inhibition of bacterial quorum sensing-regulated behaviours by Tremella fuciformis extract. Curr Microbiol 57:418–422. doi:10.1007/s00284-008-9215-8

    PubMed  CAS  Google Scholar 

  • Zhu H, Wang TW, Sun SJ, Shen YL, Wei DZ (2006) Chromosomal integration of the Vitreoscilla hemoglobin gene and its physiological actions in Tremella fuciformis. Appl Microbiol Biotechnol 72:770–776

    PubMed  CAS  Google Scholar 

  • Zhu H, Liu W, Tian B, Liu H, Ning S (2011) Inhibition of quorum sensing in the opportunistic pathogenic bacterium Chromobacterium violaceum by an extract from fruiting bodies of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (w.Curt.:Fr.) p. Karst. (higher basidiomycetes). Int J Med Mushroom 13:559–564

    Google Scholar 

  • Zhu H, Liu W, Wang S, Tian B, Zhang S (2012) Evaluation of anti-quorum-sensing activity of fermentation metabolites from different strains of a medicinal mushroom, Phellinus igniarius. Chemotherapy 58:195–199

    PubMed  CAS  Google Scholar 

  • Zibafar E, Hashemi SJ, Zaini F, Zeraati H, Rezaie S, Kordbacheh P (2009) Inhibitory effect of farnesol on biofilm formation by Candida tropicalis. Daru 17(1):19–23

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biotechnology (DBT) for funding the Microbial Culture Collection (MCC) wide grant letter no. BT/PR10054/NDB/52/94/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Jangid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sharma, R., Jangid, K. (2015). Fungal Quorum Sensing Inhibitors. In: Kalia, V. (eds) Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1982-8_20

Download citation

Publish with us

Policies and ethics