Skip to main content

Exposure, Sources, and Intoxication

  • Chapter
  • First Online:
Toxic Effects of Mercury
  • 1397 Accesses

Abstract

The use of mercury in manufacturing and medical purposes has been recorded since classical times in China, Egypt, Greece, and Rome. Concomitantly, poisoning by this metal has also been reported since 2,000 years ago, such as in Pliny the Elder’s (23–79 AD) Naturae Historiarum Libri, which refers to cinnabar (HgS) poisoning among miners at Almaden, Spain (Rackham 1952). Mercury as a poison has been documented for many centuries.

The leperous distilment; whose effect

Holds such an enmity with blood of man

That swift as quicksilver it courses through

The natural gates and alleys of the body,

And with a sudden vigor it doth posset

And curd, like eager droppings into milk,

The thin and wholesome blood: so did it mine;

(W. Shakespeare: Hamlet, Prince of Denmark. Act I, Scene 5 (1600))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CR, Zeigler DK, Lin JT (1983) Mercury intoxication simulating amyotrophic lateral sclerosis. J Am Med Assoc 250:642–643

    CAS  Google Scholar 

  • Agarwal R, Kumar R, Behari JR (2007) Mercury and lead content in fish species from the river Gomti, Lucknow, India, as biomarkers of contamination. Bull Environ Contam Toxicol 78:118–122

    CAS  PubMed  Google Scholar 

  • Alexander J, Aaseth J (1982) Organ distribution and cellular uptake of methylmercury in the rat as influenced by the intra and extracellular glutathione concentration. Biochem Pharmacol 31:685–690

    CAS  PubMed  Google Scholar 

  • Andren AW, Harriss RC (1973) Methylmercury in estuarine sediments. Nature 245:256–257

    CAS  Google Scholar 

  • Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Res 14:169–176

    CAS  Google Scholar 

  • Aschner M, Cherian MG, Klaassen CD, Palmiter RD, Erickson JC, Bush AI (1997) Metallothioneins in brain: the role in physiology and pathology. Toxicol Appl Pharmacol 142:229–242

    CAS  PubMed  Google Scholar 

  • Atchison WD (2005) Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Trends Pharmacol Sci 26:549–557

    CAS  PubMed  Google Scholar 

  • ATSDR (1999) Toxicological profile for mercury. Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services. Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2001) 2001 CERCLA priority list of hazardous substances. Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services. Public Health Service, Atlanta

    Google Scholar 

  • Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi NY, Tikriti S, Dhahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methyl mercury poisoning in Iraq. Science 181:230–241

    CAS  PubMed  Google Scholar 

  • Biesinger KE (1974) The chronic toxicity of mercury to Daphnia magna. National water quality laboratory report. U.S. Environmental Protection Agency, Duluth

    Google Scholar 

  • Burrows WD, Taimi KI, Krenkel PA (1974) The uptake and loss of methylmercury by freshwater fish. In: Congreso Internacional Del Mercurio, Barcelona

    Google Scholar 

  • Castoldi AF, Coccini T, Ceccatelli S, Manzo L (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55:197–203

    CAS  PubMed  Google Scholar 

  • Cernichiari E, Brewer R, Myers GJ, Marsh DO, Lapham LW, Cox C, Shamlaye CF, Berlin M, Davidson PW, Clarkson TW (1995) Monitoring methylmercury during pregnancy; maternal hair predicts fetal brain exposure. Neurotoxicology 16:705–710

    CAS  PubMed  Google Scholar 

  • Chang LW (1980) Mercury. In: Spencer PS, Schaumburg HH (eds) Experimental and clinical neurotoxicology. The Williams and Wilkins Co., New York, pp 508–526

    Google Scholar 

  • Clarkson RW (2002) The three modern faces of mercury. Environ Health Perspect 110:11–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cordier S, Garel M, Mandereau L, Morcel H, Doineau P, Gosme-Seguret S, Josse D, White R, Amiel-Tison C (2002) Neurodevelopmental investigations among methylmercury-exposed children in French Guiana. Environ Res 89:1–11

    CAS  PubMed  Google Scholar 

  • Davis LE, Kornfield M, Mooney HS, Fiedler KJ, Haaland KY, Orrison WW, Cernichiari E, Clarkson TW (1994) Methylmercury poisoning: long-term clinical, radiological, toxicological and pathological studies of an affected family. Ann Neurol 35:680–688

    CAS  PubMed  Google Scholar 

  • De Freitas ASW, Qadri SU, Case BE (1974) Origins and fate of mercury compounds in fish. In: Proceedings of the international conference on transport of persistent chemicals in aquatic ecosystems, Ottawa. p III-31–III-36

    Google Scholar 

  • De Laguna A (1955) Pedacio Dioscorides Anazarbeo, Acerca de la Materia Medicinal y de los venenos mortiferos. Libro V, Cap. LXIX: Del Azogue, Juan Latio, Anvers, Belgium. p 540–542

    Google Scholar 

  • Denny MF, Atchison WD (1994) Elevations in the free intrasynaptosomal concentration of endogenous zinc by methylmercury. J Neurochem 14:290

    Google Scholar 

  • Denny MF, Hare MF, Atchison WD (1993) Methylmercury alters intrasynaptosomal concentrations of endogenous polyvalent cations. Toxicol Appl Pharmacol 122:222–232

    CAS  PubMed  Google Scholar 

  • Do Nascimento JLM, Oliveira KRM, Crespo-Lopez ME, Macchi BM, Maues LAL, Pinheiro MCN, Silveira LCL, Herculano AM (2008) Methylmercury neurotoxicity and antioxidant defenses. Indian J Med Res 128:373–382

    CAS  PubMed  Google Scholar 

  • Dodes JE (2001) The amalgam controversy: an evidence-based analysis. JADA 132:348–356

    CAS  PubMed  Google Scholar 

  • Environmental Working Group (EWG) (2001) What women should know about mercury contamination of fish? Environmental Working Group, Washington, DC, pp 1–4

    Google Scholar 

  • Ernst E, Coon CT (2001) Heavy metals in traditional Chinese medicines: a systemic review. Clin Pharmacol Ther 70:497–504

    CAS  PubMed  Google Scholar 

  • Eto K (2000) Minamata disease. Neuropathology 20:S14–S19

    PubMed  Google Scholar 

  • Fagerstrom T, Jernelov A (1971) Formation of methylmercury from pure mercuric sulfide in aerobic sediment. Water Res 5:121–122

    CAS  Google Scholar 

  • Fagerstrom T, Jernelov A (1974) Biological methylation of mercury, food chain accumulations, ecological effects and routes of exposure to man. CRC Crit Rev Environ Control 4:296

    Google Scholar 

  • Ferrara R, Mazzolai B, Lanzillotta E, Nucaro E, Pirrone N (2000) Temporal trends in gaseous mercury evasion from the Mediterranean seawaters. Sci Total Environ 259:183–190

    CAS  PubMed  Google Scholar 

  • Fitzgerald WF, Lyons WB (1973) Organic mercury compounds in coastal waters. Nature 242:452–453

    CAS  PubMed  Google Scholar 

  • Fox JH, Patel-Mandlik K, Cohen MM (1975) Comparative effects of organic and inorganic mercury on brain slice respiration and metabolism. J Neurochem 24:757–762

    CAS  PubMed  Google Scholar 

  • Gillespie DC (1972) Mobilization of mercury from sediments into guppies (Poecilia reticulata). J Fish Res Bd Can 29:1035–1041

    CAS  Google Scholar 

  • Goldwater LJ (1936) From Hippocrates to Ramazzini: early history of industrial medicine. Ann Med Hist 8:27–35

    Google Scholar 

  • Gonzalez-Duarte P (2003) Metallothioneins. In: McCleverty J, Meyer TJ (eds) Comprehensive coordination chemistry II, 8th edn. Elsevier-Pergamon, Amsterdam, pp 213–228

    Google Scholar 

  • Halsey NA (1999) Limiting infant exposure to thimerosal in vaccines and other sources of mercury. JAMA 282:1763–1766

    CAS  PubMed  Google Scholar 

  • Hansen JC (1990) Human exposure to metals through consumption of marine foods: a case study of exceptionally high intake among Greenlanders. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 227–243

    Google Scholar 

  • Harada M, Nakanishi J, Yasoda E, Pinheiro MC, Oikawa R, de Assis Guimaraes, Harriss RC, White D, MacFarlane R (1970) Mercury compounds reduce photosynthesis in plankton. Science 170:736

    Google Scholar 

  • Harada M, Nakanishi J, Yasoda E, Pinheiro MC, Oikawa T, de Assis Guimaraes G, da Silva Cardoso B, Kizaki T, Ohno H (2001) Mercury pollution in the Tapajos River basin, Amazon: mercury level of head hair and health effects. Environ Int 27:285–290

    CAS  PubMed  Google Scholar 

  • Hartung R (1973) A survey of heavy metals in the lower Mississippi River. University of Michigan, Ann Arbor

    Google Scholar 

  • Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55:133–145

    CAS  PubMed  Google Scholar 

  • Huckabee JW, Goldstein RA (1973) Dynamic redistribution of methylmercury in a pond ecosystem. In: Proceedings of the first annual NSF trace contaminants conference. National Science Foundation

    Google Scholar 

  • Hunter D, Russell DS (1954) Focal cerebral and cerebellar atrophy in a human subject due to organic mercury compounds. J Neurol Neurosurg Psychiatry 17:235–241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter D, Bomfond RR, Russell DS (1940) Poisoning by methylmercury compounds. Q J Med 35:193–213

    Google Scholar 

  • Imura N, Pan S, Ukita T (1972) Methylation of inorganic mercury with liver homogenate of tuna fish. Chemosphere 5:197

    Google Scholar 

  • International Medical Veritas Association (IMVA) (2006) Diabetes and mercury poisoning. Medical news

    Google Scholar 

  • Jacobs LW, Keeney DR (1974) Methylmercury formation in mercury treated river sediments during in situ equilibration. J Environ Qual 3:121–126

    CAS  Google Scholar 

  • Jensen S, Jernelov A (1969) Biological methylation of mercury in aquatic organisms. Nature 223:753–754

    CAS  PubMed  Google Scholar 

  • Jernelov A (1969) Are there any difference between “biologically” and “chemically” synthesized methylmercury? Vatten 3:304

    Google Scholar 

  • Jernelov A (1970) Release of methylmercury from sediments with layers containing inorganic mercury at different depths. Limnol Oceanogr 15:958–960

    CAS  Google Scholar 

  • Jernelov A, Lann H (1971) Mercury accumulation in food chains. Oikos 22:403

    CAS  Google Scholar 

  • Juarez BI, Martinez ML, Montante M, Dufour L, García E, Jimenez-Capdeville ME (2002) Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats. Neurotoxicol Teratol 24:767–771

    CAS  PubMed  Google Scholar 

  • Komulainen H, Tuomisto J (1981) Interference of methylmercury with monoamine uptake and release in rat brain synaptosomes. Acta Pharmacol Toxicol 48:214–222

    CAS  Google Scholar 

  • Lakowicz JR, Anderson CJ (1980) Permeability of lipid bilayers to methylmercuric chloride: quantification by fluorescence quenching of a carbazole-labeled phospholipids. Chem Biol Interact 30:309–323

    CAS  PubMed  Google Scholar 

  • Lepham LW, Cermichiari E, Cox C, Meyers GJ, Baggs RB, Brewer R, Shamlaye CF, Davidson PW, Clarkson TW (1995) An analysis of autopsy of brain tissue from infants prematurely exposed to methylmercury. Neurotoxicology 16:689–704

    Google Scholar 

  • Levesque PC, Atchison WD (1991) Disruption of brain mitochondrial calcium sequestration by methylmercury. J Pharmacol Exp Ther 256:236–242

    CAS  PubMed  Google Scholar 

  • Limke TL, Otero-Montanez JK, Atchison WD (2003) Evidence for interactions between intracellular calcium stores during methylmercury induced intracellular calcium dysregulation in rat cerebellar granule neurons. J Pharmacol Exp Ther 304:949–958

    CAS  PubMed  Google Scholar 

  • Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77:73–78

    CAS  PubMed  Google Scholar 

  • Marsh DO, Turner MD, Crispin Smith J, Wun Choi J, Clarkson TW (1974) Methylmercury (MeHg) in human population eating large quantities of marine fish. II. American Samoa: cannery workers and fishermen. In: Proceedings of the first international mercury conference, Barcelona, 2. Fabrica de Moneda y Timbre, Madrid, pp 235–239

    Google Scholar 

  • Marty MS, Atchison WD (1998) Elevations of intracellular Ca2+ as a probable contributor to decreased viability in cerebellar granule cells following acute exposure to methylmercury. Toxicol Appl Pharmacol 150:98–105

    CAS  PubMed  Google Scholar 

  • Matida Y, Kumada H (1969) Distribution of mercury in water, bottom mud and aquatic organisms of Minamata Bay, the River Agano and other water bodies in Japan. Bull Freshw Fish Res Lab 19:73

    Google Scholar 

  • Matida Y, Kumada H, Kimura S, Saiga Y, Nose T, Yokote M, Kawatsu H (1971) Toxicity of mercury compounds to aquatic organisms and accumulation of the compounds by the organisms. Bull Freshw Fish Res Lab 21:197–227

    Google Scholar 

  • Matsumura F, Gotoh Y, Boush GM (1972) Factors influencing the translocation and transformation of mercury in river sediment. Bull Environ Contam Toxicol 8:267–272

    CAS  PubMed  Google Scholar 

  • Minema DJ, Cooper GP, Greeland RD (1989) Effects of methylmercury on neurotransmitters release from rat brain synaptosomes. Toxicol Appl Pharmacol 99:510–521

    Google Scholar 

  • Miura K, Inokawa M, Imura N (1984) Effects of methylmercury and some metal ions on microtubule networks in mouse glioma cells and in vitro tubulin polymerization. Toxicol Appl Pharmacol 73:218–231

    CAS  PubMed  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81:769–776

    CAS  PubMed  Google Scholar 

  • Morkzan EM, Kerper LE, Ballatori N, Clarkson TW (1995) Methylmercury-thiol uptake into cultured brain capillary endothelial cells on amino acid system L. J Pharmacol Exp Ther 272:1277–1284

    Google Scholar 

  • Naganuma A, Miura K, Tanaka-Kagawa T, Kitahara J, Seko Y, Toyoda H, Imura N (1998) Overexpression of manganese-superoxide dismutase prevents methylmercury toxicity in HeLa cells. Life Sci 62:L157–L161

    Google Scholar 

  • National Research Council (2000) Toxicological effects of methylmercury. National Academy Press, Washington, DC, Committee on the Toxicological Effects of Methylmercury

    Google Scholar 

  • Norseth T, Clarkson TW (1970) Studies on the biotransformation of 203 Hg-labelled methylmercury chloride in rats. Arch Environ Health 21:717–727

    CAS  PubMed  Google Scholar 

  • Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm 43:1–11

    CAS  Google Scholar 

  • Ozuah PO (2000) Mercury poisoning. Curr Probl Pediatr 30:91–99

    CAS  PubMed  Google Scholar 

  • Park ST, Lim KT, Chung YT, Kim SU (1996) Methylmercury induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology 17:37–45

    CAS  PubMed  Google Scholar 

  • Prasad KN, Nobles E, Ramanujam M (1979) Differential sensitivity of glioma cells and neuroblastoma cells to methylmercury toxicity in cultures. Environ Res 19:189–201

    CAS  PubMed  Google Scholar 

  • Rackham H (1952) Pliny: natural history (English trans.), Loeb Classical ser. W. Heinemann, London

    Google Scholar 

  • Ramel C (1969) Genetic effects of organic mercury compounds: I. cytological investigations on allium roots. Hereditas 61:208

    CAS  PubMed  Google Scholar 

  • Reimers RS, Krenkel PA (1974) Sediment sorption phenomena. CRC Crit Revs Environ Control 4:265

    Google Scholar 

  • Research Committee on Minamata Disease (RCMD) (1974) Pathological, clinical and epidemiological research about Minamata disease; 10 years after (trans: Ishizaki R). Interuniversity Consortium for Environmental Studies, Durham

    Google Scholar 

  • Rising L, Vitarella D, Kimelberg HK, Aschner M (1995) Metallothionein induction in neonatal rat primary astrocyte cultures protects against methylmercury cytotoxicity. J Neurochem 65:1562–1568

    CAS  PubMed  Google Scholar 

  • Rizvi SJ, Zahir F, Jairajpuri DS (2005) Mercury: the lurking danger. Anil Aggrawal’s Internet J Forensic Med Toxicol 6

    Google Scholar 

  • Sager PR, Doherty RA, Olmsted JB (1983) Interaction of methylmercury with microtubules in cultured cells and in vitro. Exp Cell Res 146:127–137

    CAS  PubMed  Google Scholar 

  • Salonen JT, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern fisher men. Circulation 91:645–655

    CAS  PubMed  Google Scholar 

  • Salonen JT, Seppanen K, Lakka TA, Salonen R, Kaplan GA (2000) Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4 year follows up study in men in eastern Finland. Atherosclerosis 148:265–273

    CAS  PubMed  Google Scholar 

  • Sekine T, Cha SH, Endou H (2000) The multispecific organic anion transporter (OAT) family. Pflugers Arch 440:337–350

    CAS  PubMed  Google Scholar 

  • Shanker G, Allen JW, Mutkus LA (2001) Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Res 914:159–165

    CAS  PubMed  Google Scholar 

  • Shenker BJ, Guo TL, Shapiro IM (1999) Induction of apoptosis in human T-cells by methyl mercury: temporal relationship between mitochondrial dysfunction and loss of reductive reserve. Toxicol Appl Pharmacol 157:23–35

    CAS  PubMed  Google Scholar 

  • Sigerest HE (1996) Four treatises of Theophrastus von Hohenheim called Paracelsus. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Sone N, Margareta K, Larsstuvold, Kagawa Y (1977) Effect of methyl mercury on phosphorylation, transport, and oxidation in mammalian mitochondria. J Biochem 82:859–868

    CAS  PubMed  Google Scholar 

  • Sorensen N, Murata K, Budtz-Jorgensen E, Weihe P, Grandjean P (1999) Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology 10:370–375

    CAS  PubMed  Google Scholar 

  • Spangler WJ, Sigarelli JL, Miller HM (1972) Studies on the biomethylation of mercury. Midwest Research Institute, Kansus City

    Google Scholar 

  • Spangler WJ, Spigarelli JL, Rose JM, Flippin RS, Miller HH (1973) Degradation of methylmercury by bacteria isolated from environmental samples. Appl Microbiol 25:488–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steuerwald U, Weihe P, Jorgensen PJ, Bjerve K, Brock J, Heinzow B, Budtz-Jorgensen E, Grandjean P (2000) Maternal seafood diet, methyl-mercury exposure and neonatal neurological function. J Pediatr 136:599–605

    CAS  PubMed  Google Scholar 

  • Takeuchi T, Norikawa N, Matsumoto H, Shiraishi Y (1962) Pathological study of Minamata disease in Japan. Acta Neuropathol 2:40–57

    Google Scholar 

  • Takeuchi T, Eto N, Eto K (1979) Neuropathology of childhood cases of methylmercury poisoning (Minamata disease) with prolonged symptoms, with particular reference to the decortication syndrome. Neurotoxicology 1:1–20

    Google Scholar 

  • Trakhtenberg IM (1964) Chronic effects of mercury on organisms: the micromercurialism phenomenon on mercury handlers. Ch VI: 109-34, DHEW Publ. No. (NIH) 74-473, and mercury: cardiovascular adverse effects

    Google Scholar 

  • Turner MD, Marsh DO, Smith JC, Inglis JB, Clarkson TW, Rubio CE, Chiriboga J, Chiriboga CC (1980) Methylmercury in populations eating large quantities of marine fish. Arch Environ Health 35:367–378

    CAS  PubMed  Google Scholar 

  • Verity MA, Brown WJ, Cheung M (1975) Organic mercurial encephalopathy: in vivo and in vitro effects of methylmercury on synaptosomal respiration. J Neurochem 25:759–766

    CAS  PubMed  Google Scholar 

  • Vogel DG, Margolis R, Mottet NK (1989) Analysis of methylmercury binding sites on tubulin subunits and microtubules. Pharmacol Toxicol 64:196–201

    CAS  PubMed  Google Scholar 

  • Volterra A, Trotti D, Racagni G (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol Pharmacol 46:986–992

    CAS  PubMed  Google Scholar 

  • Walters IJ, Wolery TJ (1974) Transfer of heavy metal pollutants from Lake Erie bottom sediments to the overlying water. Water Resources Center, Engineering Experiment Station, The Ohio State University Columbus, Ohio, 43210

    Google Scholar 

  • Weir PA, Hine CH (1970) Effects of various metals on behavior of conditioned goldfish. Arch Environ Health 20:45

    CAS  PubMed  Google Scholar 

  • World Health Organization (1989) Environmental health criteria 86: environmental aspects of mercury. International programme of chemical safety. World Health Organization, Geneva, p 115

    Google Scholar 

  • World Health Organization (1990) Methyl mercury, vol 101. Distribution and Sales Service, International Programme on Chemical Safety, Geneva, p 144

    Google Scholar 

  • World Health Organization (1991) Inorganic mercury, vol 118. Distribution and Sales Service, International Programme on Chemical Safety, Geneva

    Google Scholar 

  • Wright JG, Natan MJ, MacDonnell FM, Ralston DM, O’Halloran TV (1990) Mercury (II) thiolate chemistry and the mechanism of the heavy metal biosensor MerR. Prog Inorg Chem 38:323–412

    CAS  Google Scholar 

  • Yannai S, Berdicevsky I, Duek L (1991) Transformations of inorganic mercury by Candida albicans and saccharomyces cerevisiae. Appl Environ Microbiol 57:245–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao CP, Allen JW, Conklin DR, Aschner M (1999) Transfection and overexpression of metallothionein-I in neonatal rat primary astrocyte cultures and in astrocytoma cells increases their resistance to methylmercury-induced cytotoxicity. Brain Res 818:414–420

    CAS  PubMed  Google Scholar 

  • Yoshino Y, Mozai T, Nakao K (1966a) Biochemical changes in the brain in rats poisoned with an alkylmercury compound, with special reference to the inhibition of protein synthesis in brain cortex slices. J Neurochem 13:1223–1230

    CAS  PubMed  Google Scholar 

  • Yoshino Y, Mozai T, Nakao K (1966b) Distribution of mercury in the brain and its subcellular units in experimental organic mercury poisoning. J Neurochem 13:397–406

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Nabi, S. (2014). Exposure, Sources, and Intoxication. In: Toxic Effects of Mercury. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1922-4_7

Download citation

Publish with us

Policies and ethics