Skip to main content

Ammonium- and Phosphonium-Based Ionic Liquid: Green and Reusable Catalysts

  • Chapter
  • First Online:
Green Chemistry: Synthesis of Bioactive Heterocycles

Abstract

Recently, the use of ionic liquids (ILs) attracted an increasing interest in the field of organic synthesis because of its mild reaction condition, negligible vapor pressure, solvating ability, and easy recyclability. ILs are used as green reaction media due to their unique chemical and physical properties such as non-volatility, noninflammability, thermal stability, and controlled miscibility. Today, they have a wider scope, playing significant role in reactions as a solvent as well as catalyst. Several reactions have been recently reported using ILs as reaction media and rate enhancers. In chemical and pharmaceutical industries, there is always a demand for the development of more environmental friendly organic reaction methodologies using nonhazardous catalysis. Organic transformations using IL are gaining much attention due to simplified product isolation, mild reaction conditions, and high selectivity. ILs have received great attention in the past few years due to their broad range of potential uses and minimized use of hazardous chemicals by replacing the traditional organic solvents.

Several excellent reviews and books cover the field of IL and its applications. However, from the literature point of view, functionalized phosphonium- and ammonium-based ILs are less focused but are needed for their increasing role in different fields. In this chapter, we have highlighted recent developments towards phosphonium- and ammonium-based ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rusen F, Dongbin Z, Yongjun G (2010) Revisiting characteristics of ionic liquids: a review for further application development. J Environ Prot 1:95–104

    Google Scholar 

  2. Zhonghao L, Zhen J, Yuxia L, Tiancheng M (2008) Ionic liquids for synthesis of inorganic nanomaterials. Curr Opin Solid State Mater Sci 12(1):1–8

    Google Scholar 

  3. Feng S, Yanlong G, Qinghua Z, Youquan D (2004) Development of ionic liquids as green reaction media and catalysts. Catal Surv Asia 8(3):179–186

    Google Scholar 

  4. Michael F, London C & En (2004) Ionic liquids in organic synthesis. Sci Technol 8(82):44–49

    Google Scholar 

  5. Xuehui L, Dongbin Z, Zhaofu F, Lefu W (2006) Applications of functionalized ionic liquids. Sci China Series B Chem 49(5):385–401

    Google Scholar 

  6. Douglas R, MacFarlane AC, Kenneth RS (2007) Ionic liquids-progress on the fundamental issues. Aust J Chem 60:3–56

    Google Scholar 

  7. Thomas W (2002) Ionic liquids in synthesis (Ed. Peter Wasserscheid). Wiley-VCH, Weinheim

    Google Scholar 

  8. Dupont J, de Souza RF, Suarez P, A Z (2002) Ionic liquid (Molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    CAS  Google Scholar 

  9. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407, doi: 10.1039/B107270F

    Google Scholar 

  10. (a) Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A: Gen 222:101–117. (b) Dyson PJ (2002) Transition metal chemistry in ionic liquids. Transit Met Chem 27:353–358. (c) Sheldon RA, Lau RM, Sorgedrager MJ, van RF, Seddon KR (2002). Biocatalysis in ionic liquids. Green Chem 4:147–151

    Google Scholar 

  11. Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed Engl 39:3772–3789

    CAS  Google Scholar 

  12. Singh G, Kumar A (2008) Ionic liquids: physico-chemical, solvent properties and their applications in chemical processes. Indian J Chem 47A:495–503

    CAS  Google Scholar 

  13. Fremantle M (1998) Designer solvents: ionic liquids may boost clean technology development. Chem Eng News 76:32–37

    Google Scholar 

  14. Wasserscheid P, Welton T (2002) Ionic liquids in synthesis (p 85). Wiley-VCH, Stuttgart

    Google Scholar 

  15. (a) Gordon CM, Holbrey JD, Kennedy AR, Seddon KR (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627. (b) Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure App Chem 72:2275

    Google Scholar 

  16. (a) Rogers RD, Seddon KR (2005) Ionic liquids iii a: fundamentals, progress, challenges, and opportunities properties and structure. American Chemical Society, WashingtonD.C. (b) Wilkes JS (2004) Properties of ionic liquid solvents for catalysis. J Mol Catal A: Chem 214:11. (c) Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (Molten salt) phase organometallic catalysis. Chem Rev 102:3667. (d) Hardacre C (2005) Application of exafs to molten salts and ionic liquid technology. Ann Rev Mater Res 35:29

    Google Scholar 

  17. (a) Gordon CM, Holbrey JD, Kennedy AR, Seddon KR (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8(12):2627–2636. (b) Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 2133–2139

    Google Scholar 

  18. Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72(12):2275–2287

    CAS  Google Scholar 

  19. Davis JH (2004) Task-specific ionic liquids. Chem Lett 9:1072–1077

    Google Scholar 

  20. Plechkova N, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    CAS  Google Scholar 

  21. Holbrey JD, Rogers RD (2003) Ionic liquids in synthesis. WILEY-VCH, Germany

    Google Scholar 

  22. Fei Z, Geldbach TJ, Zhao D, Dyson PJ (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J 12:2122–2130

    CAS  Google Scholar 

  23. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogenous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5(2):266–268

    CAS  Google Scholar 

  24. Niyazi B (2005) A new ionic liquid: 2-hydroxy ethylammonium formate. J Mol Liq 116(1):15–18

    Google Scholar 

  25. (a) Chauvin Y, Olivier-Bourbigou H (1995) Nonaqueous ionic liquids as reaction solvents. Chemtech 25:26–30. (b) Ngo HL, Le Compte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102

    Google Scholar 

  26. (a) Appleby D, Hussey CL, Seddon KR, Turp JE (1986) Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature 323:614–616. (b) Seddon KR (1996) Room-temperature ionic liquids-neoteric solvents for clean catalysis. Kinet Catal 37:693–697. (c) Earle NJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398

    Google Scholar 

  27. Soukup-Hein RJ, Warnke MM, Daniel W, Armstrong DW (2009) Ionic liquids in analytical chemistry. Annu Rev Anal Chem 2:145–168

    CAS  Google Scholar 

  28. Armstrong DW, He L, Liu YS (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3873–3876

    CAS  Google Scholar 

  29. Poole CF, Kersten BR, Ho S, S J, Coddens ME, Furton KJ (1986) Organic salts, liquid at room temperature, as mobile phases in liquid chromatography. J Chromatogr 352:407–425

    CAS  Google Scholar 

  30. Berthod A, He L, Armstrong DW (2001) Ionic liquids as stationary phase solvents for methylated cyclodextrins in gas chromatography. Chromatographia 53:63–68

    CAS  Google Scholar 

  31. Yanes EG, Gratz SR, Baldwin MJ, Robinson SE, Stalcup AM (2001) Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Anal Chem 73(16):3838–3844

    CAS  Google Scholar 

  32. Baker GA, Baker SN, Pandey S, Bright FV (2005) An analytical view of ionic liquids. Analyst 130:800–808

    CAS  Google Scholar 

  33. Kumar V, Malhotra SV (2009) Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids. Bioorg Med Chem Lett 19(16):4643–4646

    CAS  Google Scholar 

  34. Andreani L, Rocha JD (2012) Use of ionic liquids in biodiesel production: a review. Brazilian J Chem Eng 29(01):1–13

    CAS  Google Scholar 

  35. Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66(1):51–57

    CAS  Google Scholar 

  36. Boennemann H, Brinkmann R, Kinge S, Ely TO, Armand M (2004) Chloride free Pt- and PtRu- nanoparticles stabilised by “armand’s ligand” as precursors for fuel cell catalysts. Fuel Cells 4(4):289–296

    CAS  Google Scholar 

  37. Pedro M, Jaïrton D (2006) Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem—A Eur J 13(1):32–39

    Google Scholar 

  38. Parkinson G (2001) Reviving up for alkylation. Chem Eng 108(1):27–33

    CAS  Google Scholar 

  39. Boesmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P (2001) Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun (23):2494–2495

    Google Scholar 

  40. Eber J, Wasserscheid P, Jess A (2004) Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem 6(7):316–322

    CAS  Google Scholar 

  41. (a) Dyson PJ (2002) Transition metal chemistry in ionic liquids. Trans Met Chem 27:353–358. (b) Tao G-H, Chen Z-Y, He L, Kou Y (2005) Design of novel liquid-liquid biphasic catalytic system: π-acceptor ligand ionic liquids. Chin J Catal 26(3):248–252

    Google Scholar 

  42. (a) PVI, Hardacre C (2007) Catalysis in ionic liquid. Chem Rev 107:2615. (b) Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772. (c) Harper JB, Kobrak MN (2006) Mini-Rev. Org Chem 3:253

    Google Scholar 

  43. (a) Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275. (b) Olivier-Bourbigou H, Magna L (2002) Ionic liquids and catalysis: recent progress from knowledge to applications. J Mol Catal A: Chem 419:182–183

    Google Scholar 

  44. Chauhan S, M S, Jain N, Kumar A, Chauhan S (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61:1015

    Google Scholar 

  45. (a) Dalko PI, Moisan L (2001) Enantioselective organocatalysis. Angew Chem Int Ed 40:3726. (b) Schreiner PR (2003) Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev 32:289

    Google Scholar 

  46. Keglevich G, Grun A, Hermecz I, Odinets L (2011) Quaternary phosphonium salt and 1, 3-dialkylimidazolium hexafluorophosphate ionic liquids as green chemical tools in organic syntheses. Curr Org Chem 15:3824–3848

    CAS  Google Scholar 

  47. Isambert N, Duque MS, Plaquevent JC, Génisson Y, Jean Rodriguez J, Constantieux T (2011) Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chem Soc Re 40:1347–1357

    CAS  Google Scholar 

  48. (a) Chauvin Y, Mussmann L, Olivier H (1995) A novel class of versatile solvents for two‐phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid. Angew Chem Int Ed Engl 34:2698–2700. (b) Baudequin C, Baudoux J, Levillain J, Cahard D, Annie-Claude G, Jean-Christophe P (2003) Ionic liquids and chirality: opportunities and challenges. Tetrahedron Asymmetry 14:3081–3093

    Google Scholar 

  49. Malhotra SV, Yun Wang Y, (2006) Application of chiral ionic liquids in the copper catalyzed enantioselective 1,4-addition of diethylzinc to enones. Tetrahedron Asymmetry 17(7):1032–1035

    CAS  Google Scholar 

  50. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  51. Rogers RD, Seddon KR (2003) Ionic liquids as green solvents: progress and prospects, ACS Symposium Series, 1 edn. American Chemical Society, Washington D.C., p 856

    Google Scholar 

  52. Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications for green chemistry, ACS Symposium Series 818. American Chemical Society, Washington D.C.

    Google Scholar 

  53. Rogers RD, Seddon KR, Volkov S (2002) Green industrial applications of ionic liquids (NATO Science Series II: Mathematics, Physics and Chemistry, 92). Springer, 31.01.2003—553 pages

    Google Scholar 

  54. Earle MJ, Seddon KR, McCormac PB (2000) The first high yield green route to a pharmaceutical in a room temperature ionic liquid. Green Chem 2(6):261–262

    CAS  Google Scholar 

  55. Allen D, Baston G, Bradley AE, Gorman T, Haile A, Hamblett I, Hatter JE, Healey M, J F, Hodgson B, Lewin R, Lovell KV, Newton B, Pitner WR, Rooney DW, Sanders D, Seddon KR, Sims HE, Thied RC (2002) An investigation of the radiochemical stability of ionic liquids. Green Chem 4(2):152–158

    CAS  Google Scholar 

  56. (a) Csihony S, Mehdi H, Homonnay Z, Vertes A, Farkas O, Horvath IT (2002) In situ spectroscopic studies related to the mechanism of the Friedel–Crafts acetylation of benzene in ionic liquids using AlCl3 and FeCl3. J Chem Soc Dalton Trans 5:680–685. (b) Valkenberg MH, Sauvage E, De Castro-Moreira CP, Hoelderich WF (2001) Immobilized ionic liquids. World Pat WO 0132308. (c) Earle MJ, Seddon KR, Adams CJ, Roberts G (1998). Friedel–Crafts reactions in room temperature ionic liquids. Chem Commun 19:2097–2098

    Google Scholar 

  57. Carmichael AJ, Earle MJ, Holbrey JD, McCormac PB, Seddon KR (1999) The Heck reaction in ionic liquids: a multiphasic catalyst system. Org Lett 1:997–1000

    CAS  Google Scholar 

  58. Winterton N, Seddon KR, Patell Y (2000) Halogenation of unsaturated hydrocarbons in ionic liquids. World Pat WO 0037400

    Google Scholar 

  59. (a) Van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21(3):131–138. (b) Sheldon RA, Lau RM, Sorgedrager MJ, Van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4(2):147–151

    Google Scholar 

  60. Cull SG, Holbrey JD, Vargas-Mora V, Seddon KR, Lye GJ (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng 69(2):227–233

    CAS  Google Scholar 

  61. (a) Hardacre C, Holbrey JD, Katdare SP, Seddon KR, (2002). Alternating copolymerisation of styrene and carbon monoxide in ionic liquids. Green Chem 4(2):143–146. (b) Carmichael AJ, Haddleton DM, Bon SAF, Seddon KR (2000) Copper(I) mediated living radical polymerisation in an ionic liquid. Chem. Commun. (14):1237–1238

    Google Scholar 

  62. Adams CJ, Earle MJ, Seddon KR (2000) Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Green Chem 2(1):21–24

    CAS  Google Scholar 

  63. Seddon KR, Stark A (2002) Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids. Green Chem 4(2):119–123

    CAS  Google Scholar 

  64. (a)Anderson K, Goodrich P, Hardacre C, McCath SEJ (2002) Hydrogenation processes performed in ionic liquids, World Pat. WO 02 094740. (b) Dyson PJ, Ellis DJ, Parker DG, Welton T (1999) Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem Commun (1):25–26

    Google Scholar 

  65. Beletskaya IP, Cheprakov AV (2000) The heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    CAS  Google Scholar 

  66. Martins M, A P, Frizzo CP, Moreira DN, Zanatta N, Bonacorso G (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108(6):2015–2050

    CAS  Google Scholar 

  67. Kappe CO, Dallinger D (2006) The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5(1):51–63

    Google Scholar 

  68. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Google Scholar 

  69. Adams CJ, Earle MJ, Seddon KR (1999) Stereoselective hydrogenation reactions in chloroaluminate (III) ionic liquids: a new method for the reduction of aromatic compounds. Chem Commun 11:1043–1044

    Google Scholar 

  70. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imper Sci 1800:405–422

    Google Scholar 

  71. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem 21:1263

    CAS  Google Scholar 

  72. Davis JH (2004) Task-specific ionic liquids. Chem Lett 9:1072–1077

    Google Scholar 

  73. Xuehui LX, Zhao D, Fei Z, Wang L (2006) Applications of functionalized ionic liquids. Science in China Series B. Chemistry 49(5):385–401

    Google Scholar 

  74. Yang Y-L, Kou Y (2004) Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun 2:226–227

    Google Scholar 

  75. (a)Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem. 4(2):73–80. (b)Li D, Shi F, Peng J, Guo S, Deng Y. (2004) Application of functional ionic liquids possessing two adjacent acid sites. J Org Chem 69(10):3582–3585. (c) Handy ST (2003) Greener solvents: room temperature ionic liquids from biorenewable sources. Chem Eur J 9(13):2938–2944. (d) Yang Y-L, Wang X-H, Kou Y, Min E-Z (2003) The Expanding Family of Ionic Liquids.Prog Chem 15(6):471–476. (e) Mehnert CP (2004) Chem Eur J 11:50–56

    Google Scholar 

  76. Cole AC, Jensen JL, Ntai I, Tran K, L T, Weaver KJ, Forbes DC, Davis JH (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc 124(21):5962–5963

    CAS  Google Scholar 

  77. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Revews 99:2071

    CAS  Google Scholar 

  78. a) Panchgalle SP, Kalkote UR, Niphadkar PS, Joshi PN, Chavan SP, Chaphekar G (2004) Sn-β molecular sieve catalysed Baeyer–Villiger oxidation in ionic liquid at room temperature. Green Chem. 6:308–309. b) Leadbeater NE, Torenius H, Tye H (2003) Microwave-assisted Mannich-type three-component reactions. Mol Divers 7:135

    Google Scholar 

  79. Ryo K, Kuniaki U, Shota H, Yasuhiro U, Shin I, Satoshi N (2007) Acid–base property of ethylammonium nitrate ionic liquid directly obtained using ion-selective field effect transistor electrode. Chem Lett 36(5):684

    Google Scholar 

  80. Angell CA, Byrne N, Belieres JP (2007) Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc Chem Res 40:1228

    CAS  Google Scholar 

  81. Belieres JP, Gervasio D, Angell CA (2006) Binary inorganic salt mixtures as high conductivity liquid electrolytes for > 100°C fuel cells. Chem Commun 2006:4799–4801

    Google Scholar 

  82. Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution-like conductivities. Science 302(5644):422

    CAS  Google Scholar 

  83. Susan MABH, Noda A, Mitsushima S, Watanabe M (2003) Brønsted acid–base ionic liquids and their use as new materials for anhydrous proton conductors. Chem Commun 2003:938

    Google Scholar 

  84. Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Imidazole and Pyrazole-based proton conducting polymers and liquids. Elechtochim Acta 43:1281

    CAS  Google Scholar 

  85. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206

    CAS  Google Scholar 

  86. Koichi F, Alexander W, Ralf L (2009) Hydrogen bonding in protic ionic liquids: reminiscent of water. Angew Chem Int Ed 48(17):3184–3186

    Google Scholar 

  87. Garlitz JA, Summers CA, Flowers RA, Borgstahl G (1999) Ethylammonium nitrate: a ­protein crystallization reagent. Acta Cryst D55:2037–2038

    CAS  Google Scholar 

  88. Summers CA, flowers RA (2000) Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Sci 9:2001–2008

    CAS  Google Scholar 

  89. Kanzaki R, Uchida K, Song X, Umebayashi Y, Ishiguro SI (2008) Acidity and basicity of aqueous mixtures of a protic ionic liquid, ethylammonium nitrate. Anal Sci 24(10):1347

    CAS  Google Scholar 

  90. Zech O, Thomaier S, Kolodziejski A, Touraud D, Grillo I, Kunz WJ (2010) Ethylammonium nitrate in high temperature stable microemulsions. Colloid Interface Sci 347(2):227–232

    CAS  Google Scholar 

  91. Byrne N, Austen AC (2010) The solubility of hen lysozyme in ethylammonium nitrate/H2O mixtures and a novel approach to protein crystallization. Molecule 15(2):793–803

    CAS  Google Scholar 

  92. Araos MU, Warr GG (2008) Structure of nonionic surfactant micelles in the ionic liquid ethylammonium nitrate. Langmuir 24:9354–9360

    CAS  Google Scholar 

  93. Shau G, Neil D, Danielson J (2009) Methylammonium formate as a mobile phase modifier for totally aqueous reversed-phase liquid chromatography. Chromatogr A 1216(16):3578–3586

    Google Scholar 

  94. a) Poole CF, Kersten BR, Ho S, S J, Coddens ME, Furton KJ (1986) Organic salts, liquid at room tem- perature, as mobile phases in liquid chromatography. J Chromatogr 352:407–425. b) Collins MP, Zhou L, Camp SE, Danielson ND (2012) Isopropylammonium Formate as a Mobile Phase Modifier for Liquid Chromatography. J Chromatogr Sci 50(10):869–876

    Google Scholar 

  95. Poole SK, Shetty PH, Poole CF (1989) Chromatographic and spectroscopic… tetraalkylammonium sulfonates. Anal Chim Acta 218:241–264

    CAS  Google Scholar 

  96. Huang X, Luckey JA, Gordon MJ, Zare RN (1989) Quantitative determination of low molecular weight carboxylic acids by capillary zone electrophoresis/conductivity detection. Anal Chem 6:766–770

    Google Scholar 

  97. Garcia LL, Shihabi ZK (1993) Sample matrix effects in capillary electrophoresis: I. Basic considerations. J Chromatrography A 652(2):465–469

    CAS  Google Scholar 

  98. Quang C, Khaledi MG (1993) Improved chiral separations of basic compounds in capillary electrophoresis using beta-cyclodextrin and tetraalkylammonium reagents. Anal Chem 65:3354–3358

    CAS  Google Scholar 

  99. Jennifer AG, Catherine AS, Robert AF, Gloria EOB (1999) Ethylammonium nitrate: a protein crystallization reagent. Acta Cryst D55:2037–2038

    Google Scholar 

  100. Stephane D, Mireille T, Pierre L (1998) Thermodynamics of adsorption of dodecyltrimethylammonium bromide onto laponite in fused ethylammonium nitrate and its aqueous solutions. J Chem Soc Faraday Trans 94:3457È3461

    Google Scholar 

  101. a) Andrew PA, Glen C, David LD, Helen LM, Raymond KR, Vasuki T, (2001) Chem Commun 2010–2011. b) Chengfeng Ye, Weimin Liu, Yunxia Chen Laigui Yu (2001) Room-temperature ionic liquids: a novel versatile lubricant Chem Commun 2244–2245

    Google Scholar 

  102. Rajagopal R, Srinivasan KV (2003) Ultrasound promoted acetylation of alcohols in room temperature ionic liquid under ambient conditions. Ultrason Sonochem 10:41–43

    CAS  Google Scholar 

  103. Jaeger DA, Tucker CE (1989) Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tethydron Lett 30:1785

    CAS  Google Scholar 

  104. a) Araos MU, Warr GG (2005) Self-assembly of nonionic surfactants into lyotropic liquid crystals in ethylammonium nitrate, a room-temperature ionic liquid. J Phys Chem B 109(30):14275–7. b) Araos MU, Warr GG (2008) Structure of nonionic surfactant micelles in the ionic liquid ethylammonium nitrate. Langmuir 24:9354–9360

    Google Scholar 

  105. Pralhad AG, Gigi G, Jagannath D (2007) Application of triethylammonium salts as ionic liquid catalyst and medium for Fischer esterification. ARKIVOC viii:273–278

    Google Scholar 

  106. Hu Y, Wei P, Huang H, Le ZG, Chen ZC (2005) Organic reactions in ionic liquids: ionic liquids ethylammonium nitrate promoted knoevenagel condensation of aromatic aldehydes with active methylene compounds. Synth Commun 23(35):2955–2960

    Google Scholar 

  107. Madje BR, Shindalkar SS, Shingare MS (2004) One-pot Biginelli condensation reaction in an ionic liquid. Indian J Heterocycl Chem 14:87

    CAS  Google Scholar 

  108. Pankaj A, Mohinder P (2010) Simple ammonium ionic liquid catalyses the 1, 5-benzodiazepine derivatives under mild conditions. Green Chem Lett Rev 3(3):249–256

    Google Scholar 

  109. Shafeek AR, Mulla AS, Pathan MY, Siddique SA, Inamdar SM, Chavan SS, Reddy RS (2012) Efficient, rapid synthesis of bis(indolyl)methane using ethyl ammonium nitrate as an ionic liquid. RSC Adv 2:3525–3529

    Google Scholar 

  110. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2002) Quaternary ammonium zinc-or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels–Alder reactions. Green Chem 4:24–26

    CAS  Google Scholar 

  111. Ingole PG, Jadhav SV, Bajaj HC (2010) Ionic liquid mediated one pot synthesis of substituted 2, 4, 6-triarylpyridines. Int J Chem Tech Res 2(1):104

    Google Scholar 

  112. Dake SA, Raut DS, Kharat KR, Mhaske RS, Deshmukh SU, Pawar RP (2011) Ionic liquid promoted synthesis, antibacterial and in vitro antiproliferative activity of novel α-aminophosphonate derivatives. Bioorg Med Chem Lett 21:2527–2532

    CAS  Google Scholar 

  113. Bhosale RS, Suryawanshi PA, Ingle SA, Lokhande MN, More SP, Mane SB, Bhosale SV, Pawar RP (2006) Ionic liquid promoted synthesis of β-enamino ketones at room temperature. Synlett 6:933

    Google Scholar 

  114. Sarda SR, Pathan MY, Paike VV, Pachmase PR, Jadhav WN, Pawar RP (2006) A facile synthesis of flavones using recyclable ionic liquid under microwave irradiation. Arkivoc xvi:43–48

    Google Scholar 

  115. Swapnil R, Sarda SR, Kale JD, Wasmatkar SK, Kadam VS, Ingole PG, Jadhav WN, Pawar RP (2009) An efficient protocol for the synthesis of 2-amino-4, 6-diphenylpyridine-3-carbonitrile using ionic liquid ethylammonium nitrate. Mol Divers 13:545–549

    Google Scholar 

  116. Dyson PJ (2002) Review: synthesis of organometallics and catalytic hydrogenations in ionic liquids. Appl Organomet Chem 16:495–500

    CAS  Google Scholar 

  117. Taramatee R, Stephanie AT, Marissa L, Bender ML, Brian G, Peter T, Dickie DA, Brett MM, Cory C, Pye CC, Charles J, Walsby CJ, Clyburne JA (2008) Carbon-centered strong bases in phosphonium ionic liquids. J Org Chem 73(3):801–812

    Google Scholar 

  118. Taramatee R, Daisuke DI, Jason AC (2005) Phosphonium ionic liquids as reaction media for strong base. Chem Commun 2005:325–327

    Google Scholar 

  119. http://en.wikipedia.org/wiki/Ionic_liquid

  120. Anna CR, Juliusz P, Joanna KF, Alwar R, Allan JR, Kenneth RS (2005) Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem 7:855–862

    Google Scholar 

  121. Farzad A, Teresa Garcia M, Singer RD, Scammells PJ (2009) Phosphonium ionic liquids: design, synthesis and evaluation of biodegradability. Green Chem 11:1595–1604

    Google Scholar 

  122. Baumann MD, Daugulis AJ, Jessop PG (2005) Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreacton. Appl Microbiol Biotechnol 67:131–137

    CAS  Google Scholar 

  123. Karodia N, Liu X, Ludley P, Pletsas D, Stevenson G (2006) The ionic liquid ethyltri-n-butylphosphonium tosylate as solvent for the acid-catalysed hetero-Michael reaction. Tetrahedron 62(48):11039–11043

    CAS  Google Scholar 

  124. a) Chen H, Kwait DC, Gönen S, Weslowski BT, Abdallah DJ, Weiss RG (2002) Phase characterization and properties of completely saturated quaternary phosphonium salts. ordered, room-temperature ionic liquids. Chem Mater 14:4063. b) Abdallah DJ, Robertson A, Hsiu-Fu H, Weiss RG (2000) Smectic Liquid-Crystalline Phases of Quaternary Group VA (Especially Phosphonium) Salts with Three Equivalent Long n-Alkyl Chains. How Do Layered Assemblies Form in Liquid-Crystalline and Crystalline Phases. J Am Chem Soc 122:3053. c) Abdallah DJ, Bachman RE, Weiss RG (1999). J Phys Chem B 103:9269

    Google Scholar 

  125. Yoshikazu Abe Y, Kude K, Hayase S, Kawatsura M, Tsunashima K, Itoh T (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J Mole Catal B: Enzym 51(3–4):81–85

    Google Scholar 

  126. Karodia N, Guise S, Newlands C, Andersen J (1998) Clean catalysis with ionic solvents-phosphonium tosylates for hydroformylation. Chem Commun 2341–2342.

    Google Scholar 

  127. Ram Singh R, Mukul Sharma M, Mamgain R, Rawat DS (2008) Ionic liquids: a versatile medium for palladium-catalyzed reactions. J Braz Chem Soc 19(3):357–379

    Google Scholar 

  128. Abe Y, Yoshiyama K, Yagi Y, Hayase S, Kawatsura M, Itoh T (2010) A rational design of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction. Green Chem 12:1976–1980

    CAS  Google Scholar 

  129. McNulty J, Cheekoori S, Bender TP, Coggan JA (2007) A Pronounced Anionic Effect in the Pd‐Catalyzed Buchwald–Hartwig Amination Reaction Revealed in Phosphonium Salt Ionic Liquids. Eur J Org Chem 9:1423–1428

    Google Scholar 

  130. Matsumiya M, Suda S, Tsunashima K, Sugiya M, Kishioka S, Matsuura H (2008) Electrochemical behaviors of multivalent complexes in room temperature ionic liquids based on quaternary phosphonium cations. Journal of Electroanalytical Chem 622(2):129–135

    CAS  Google Scholar 

  131. a) Kaufmann DE, Nouroozian M, Henze H (1996) Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions. Synlett 1091. b) Gerritsma DA, Robertson A, McNulty J, Capretta A (2004) Heck reactions of aryl halides in phosphonium salt ionic liquids: library screening and applications. Tetrahedron Lett 45(41):7629–763.

    Google Scholar 

  132. McNulty J, Capretta A, Wilson J, Dyck J, Adjabeng G, Robertson A (2002) Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. Chem Commun 2002:1986

    Google Scholar 

  133. a) Ellis B, Hubert F, Wasserscheid P (2000) WO patent-0041809. b) Meryam B, Jean-Jacques B, Robert P (1992) Ionic liquids as solvents for the regioselective O-alkylation of C/O ambident nucleophiles. Tetrahedron Lett 33(31):4435–4438

    Google Scholar 

  134. a) Mc Nulty J, Cheekoori S, Nair J, Larichev V, Capretta A, Robertson A (2005) A mild esterification process in phosphonium salt ionic liquid. Tetrahedron Lett. 46:3641–3644. b) Yoshikazu A, Keisuke K, Shuichi H, Motoi K, Katsuhiko T, Toshiyuki I (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J Mol Catal B: Enzymatic 51(3–4):81–85

    Google Scholar 

  135. Petra L, Nazira K (2001) Phosphonium tosylates as solvents for the Diels-Alder reaction. Tetrahedron Lett 42(10):2011–2014

    Google Scholar 

  136. Ming-Chung T, Huang-Chuan K, Yen-Ho C (2007) Reactivity of trihexyl (tetradecyl) phosphonium chloride, a room-temperature phosphonium ionic liquid. Tetrahedron Lett 48:9085

    Google Scholar 

  137. Jian S, Lei W, Suojiang Z, Zengxi L, Xiangping Z, Wenbin D, Ryohei M (2006) ZnCl2/phosphonium halide: an efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J Mol Catal A: Chem 256(1–2):295–300.

    Google Scholar 

  138. Cao H, McNamee L, Alper H (2008) Syntheses of substituted 3-methyleneisoindolin-1-ones by a palladium-catalyzed sonogashira coupling–carbonylation–hydroamination sequence in phosphonium salt-based ionic liquids. Org Lett 10(22):5281–5284

    CAS  Google Scholar 

  139. Kevin J, Fraser KJ, MacFarlane DR (2009) Phosphonium-based ionic liquids: an overview. Aust J Chem 62:309–321

    Google Scholar 

  140. Janardhan B, Vijaya LS, Rajitha B (2012) An efficient synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones using (4-sulfobutyl)tris(4-sulfophenyl)-phosphonium hydrogen sulphate as catalyst under neat conditions. J Chem Pharm Res 4(1):519–525

    CAS  Google Scholar 

  141. Seyed MV, Saeed B (2013) Sulfonated organic salts: recyclable green catalysts for the facile and rapid route synthesis of 2,3-dissubstituted quinoxaline derivatives in water. World Appl Sci J 21 (3):394–401

    Google Scholar 

  142. Banothu J, Gali R, Velpula R, Bavantula R (2013) Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1 H-imidazoles under solvent-free conditions. Arabian J Chem (Article in Press http://dx.doi.org/10.1016/j.arabjc.2013.10.022)

  143. Sarda SR, Jadhav WN, Sunil U, Tekale SU, Jadhav GV, Patil BR, Suryawanshi GS, Pawar RP (2009) Phosphonium ionic liquid catalyzed an efficient synthesis of chalcones. Lett Org Chem 6:481–484

    CAS  Google Scholar 

  144. Sarda SR, Jadhav WN, Shete AS, Dhopte KB, Sadawarte SM, Gadge PJ, Pawar RP (2010) Phosphonium ionic liquid-catalyzed michael addition of mercaptans to α,β-unsaturated ketones. Synth Commun 40:2178–2184

    CAS  Google Scholar 

  145. Dake SA, Kulkarni RS, Kadam VN, Modan SS, Jayant J, Bhale JJ, Tathe SB, Pawar RP (2009) Phosphonium ionic liquid: a novel catalyst for benzyl halide oxidation. Synth Commun 39(21):3898–3390

    CAS  Google Scholar 

  146. Dake SA, Kulkarni RS, Rode BA, Shinde PS, Ghumbr PK, Magar RL, Pawar RP (2010) H2O2/phosphonium ionic liquid: an efficient and simple approach for benzyl halides oxidation. Lett Org Chem 7(6):491–494

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra P. Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Sarda, S. et al. (2014). Ammonium- and Phosphonium-Based Ionic Liquid: Green and Reusable Catalysts. In: Ameta, K., Dandia, A. (eds) Green Chemistry: Synthesis of Bioactive Heterocycles. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1850-0_4

Download citation

Publish with us

Policies and ethics