Skip to main content

QTL Identification

  • Chapter
  • First Online:
Genetic Mapping and Marker Assisted Selection
  • 2778 Accesses

Abstract

Most of the important agronomic traits are quantitatively inherited and are controlled by several genes (i.e. polygenic). Thus, the nature of quantitative traits is that their expression is controlled by tens, hundreds or even thousands of quantitative trait loci (QTL), and in general, they are having only a small effect on the trait. QTL is a genomic region that comprises gene(s) which govern(s) the expression of the quantitative trait. Since the advent of molecular markers, researchers and breeders have aimed to identify functional markers (refer chapter x for different kinds of markers) associated with these QTL for implementation of marker-assisted selection. Historically, QTL detection started with linkage mapping in biparental populations (refer chapter x for population types). Identifying a gene or QTL within a plant genome is like finding the proverbial needle in a haystack. However, QTL analysis can be used to divide the haystack in manageable piles and systematically search them. In simple terms, QTL analysis is based on the principle of detecting an association between phenotype and the genotype of markers. Markers are used to partition the mapping population into different genotypic groups based on the presence or absence of a particular marker locus and to determine whether significant differences exist between groups with respect to the quantitative trait being measured. Thus, statistically a significant difference between phenotypic means of the marker groups (either 2 or 3), depending on the marker system and type of population, indicates that the marker locus being used to partition the mapping population is linked to a QTL controlling the trait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Literature Cited

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular marker facilitated investigation of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    PubMed  CAS  Google Scholar 

  • Etzel C, Guerra R (2002) Meta-analysis of genetic-linkage of quantitative trait loci. Am J Hum Genet 71:56–65

    Article  PubMed  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Han F, Ullrich SE, Kleinhofs A, Jones BL, Hayes PM, Wesenberg DM (1997) Fine structure mapping of the barley chromosome- 1 centromere region containing malting-quality QTLs. Theor Appl Genet 95:903–910

    Article  CAS  Google Scholar 

  • Hansen M, Kraft T, Ganestam S, Säll T, Nilsson NO (2001) Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res 77:61–66

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jansen J, De Jong AG, Van Ooijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122

    Article  CAS  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1117

    PubMed  CAS  Google Scholar 

  • Jiang C, Zengt ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140(3):1111–1127

    PubMed  CAS  Google Scholar 

  • Kao C-H et al (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Mangin B, Thoquet P, Grimsley N (1998) Pleiotropic QTL analysis. Biometrics 54:88–99

    Article  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Moser G, Muller E, Beeckmann P, Yue G, Geldermann H (1998) Mapping QTL in F2 generations of Wild Boar, Pietrain and Meishanpigs. In: Proceedings of the 6th world congress on genetics applied to livestock production, vol 26, Armidale, pp 478–481

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:521–529

    Article  Google Scholar 

  • Rodolphe F, Lefort M (1993) A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics 134:1277–1288

    PubMed  CAS  Google Scholar 

  • Sax K (1923) The association of size difference with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Schneider AK, Mary EB, James DK (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60

    Article  CAS  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D et al (2001) Dwarf 8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed  CAS  Google Scholar 

  • Wolyn DJ, Borevitz JO, Loudet O, Schwartz C, Maloof J, Ecker JR, Berry CC, Chory J (2004) Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana. Genetics 167:907–917

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

Further Readings

  • Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab Anim 30(7):44–52

    CAS  Google Scholar 

  • Delvin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–322

    Article  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev 3:43–53

    CAS  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310, http://www.knowledgebank.irri.org/ricebreedingcourse/bodydefault.htm#QTL_mapping.htm

    Article  PubMed  Google Scholar 

  • Jorde LB (2000) Linkage disequilibrium and the search for complex disease genes. Genome Res 10:1435–1444

    Article  PubMed  CAS  Google Scholar 

  • Kang MS (2002) Quantitative genetics, genomics, and plant breeding. In: Papers from the symposium on quantitative genetics and plant breeding in the 21st century, Louisiana State University, 26–28 Mar 2001, CAB International 2002

    Google Scholar 

  • Kendziorski CM et al (2006) Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62:19–27

    Article  PubMed  CAS  Google Scholar 

  • McMullen MD et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manikanda Boopathi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Boopathi, N.M. (2013). QTL Identification. In: Genetic Mapping and Marker Assisted Selection. Springer, India. https://doi.org/10.1007/978-81-322-0958-4_6

Download citation

Publish with us

Policies and ethics