Skip to main content

Omics of Hereditary Breast Cancer

  • Chapter
  • First Online:
Omics Approaches in Breast Cancer

Abstract

Breast cancer is the leading cause of cancer-related deaths among women worldwide. Although advances in our understanding of this disease have been made in the last decade, the available treatments remain inadequate, particularly for the more intractable forms of breast cancer. Hereditary or familial breast cancer poses a particularly difficult challenge as only a few susceptibility genes with high penetrance have been identified, namely, BRCA1 and BRCA2. It is now suspected that the majority of hereditary and familial breast cancers are caused by various combinations of several moderate- and/or low-penetrance genes. Recent developments in research methodologies and conceptual frameworks within biology have revolutionized the study of cancer. This systems approach, which emphasizes a holistic understanding of biological systems, is referred to generally as “omics.” A decade of omics research has led to the identification of many new therapeutic targets and biomarkers, allowing for more accurate and earlier diagnosis and treatment of the wide spectrum of diseases that are collectively referred to as breast cancer. Here we review the contributions of several omics fields to our understanding of hereditary and familial breast cancer, namely, genomics, transcriptomics, proteomics, and metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn NG, Wang AH. Proteomics and genomics: perspectives on drug and target discovery. Curr Opin Chem Biol. 2008;12(1):1–3. PubMed PMID: 18302945. Pubmed Central PMCID: 2386992.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Pina AS, Hussain A, Roque AC. An historical overview of drug discovery. Methods Mol Biol. 2009;572:3–12. PubMed PMID: 20694682.

    PubMed  Google Scholar 

  3. Cappadona S, Baker PR, Cutillas PR, Heck AJ, van Breukelen B. Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids. 2012;43(3):1087–108. PubMed PMID: 22821268. Pubmed Central PMCID: 3418498.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Ferrer-Alcon M, Arteta D, Guerrero MJ, Fernandez-Orth D, Simon L, Martinez A. The use of gene array technology and proteomics in the search of new targets of diseases for therapeutics. Toxicol Lett. 2009;186(1):45–51. PubMed PMID: 19022361.

    PubMed  CAS  Google Scholar 

  5. Ershler WB. Cancer: a disease of the elderly. J Support Oncol. 2003;1(4 Suppl 2):5–10. PubMed PMID: 15346994. Epub 2004/09/07.

    PubMed  Google Scholar 

  6. Lyman GH. Economics of cancer care. J Oncol Pract. 2007;3(3):113–14. PubMed PMID: 20859394. Pubmed Central PMCID: PMC2793796. Epub 2007/05/01.

    PubMed  PubMed Central  Google Scholar 

  7. Russell HV, Panchal J, Vonville H, Franzini L, Swint JM. Economic evaluation of pediatric cancer treatment: a systematic literature review. Pediatrics. 2013;131(1):e273–87. PubMed PMID: 23266919. Epub 2012/12/26.

    PubMed  Google Scholar 

  8. Zhu G. Risk of second primary cancer after treatment for esophageal cancer: a pooled analysis of nine cancer registries. Dis Esophagus. 2012;25(6):505–11.

    PubMed  CAS  Google Scholar 

  9. Duman BB, Paydas S, Disel U, Besen A, Gurkan E. Secondary malignancy after imatinib therapy: eight cases and review of the literature. Leuk Lymphoma. 2012;53(9):1706–8. PubMed PMID: 22329351. Epub 2012/02/15.

    PubMed  CAS  Google Scholar 

  10. Karran P, Offman J, Bignami M. Human mismatch repair, drug-induced DNA damage, and secondary cancer. Biochimie. 2003;85(11):1149–60. PubMed PMID: 14726020. Epub 2004/01/17.

    PubMed  CAS  Google Scholar 

  11. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. PubMed PMID: 21296855.

    PubMed  Google Scholar 

  12. Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A. 2010;107(15):6994–9. PubMed PMID: 20335537. Pubmed Central PMCID: 2872436.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Bertos NR, Park M. Breast cancer – one term, many entities? J Clin Invest. 2011;121(10):3789–96. PubMed PMID: 21965335. Pubmed Central PMCID: PMC3195465. Epub 2011/10/04.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. PubMed PMID: 21376230.

    PubMed  CAS  Google Scholar 

  15. Trape AP, Gonzalez-Angulo AM. Breast cancer and metastasis: on the way toward individualized therapy. Cancer Genomics Proteomics. 2012;9(5):297–310. PubMed PMID: 22990109. Epub 2012/09/20.

    PubMed  CAS  Google Scholar 

  16. Galas DJ, McCormack SJ. An historical perspective on genomic technologies. Curr Issues Mol Biol. 2003;5(4):123–7. PubMed PMID: 12921227. Epub 2003/08/19.

    PubMed  Google Scholar 

  17. Riscuta G, Dumitrescu RG. Nutrigenomics: implications for breast and colon cancer prevention. Methods Mol Biol. 2012;863:343–58. PubMed PMID: 22359305.

    PubMed  CAS  Google Scholar 

  18. Singh K, Lester J, Karlan B, Bresee C, Geva T, Gordon O. Impact of family history on choosing risk-reducing surgery among BRCA mutation carriers. Am J Obstet Gynecol. 2013;208(4):329.e1–6. PubMed PMID: 23333547. Epub 2013/01/22.

    Google Scholar 

  19. Euhus D. Managing the breast in patients who test positive for hereditary breast cancer. Ann Surg Oncol. 2012;19(6):1738–44. PubMed PMID: 22395981. Epub 2012/03/08.

    PubMed  Google Scholar 

  20. Smith KL, Isaacs C. BRCA mutation testing in determining breast cancer therapy. Cancer J. 2011;17(6):492–9. PubMed PMID: 22157293. Pubmed Central PMCID: PMC3240813, Epub 2011/12/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. PubMed PMID: 10963602. Epub 2000/08/30.

    PubMed  CAS  Google Scholar 

  22. Cascione L, Gasparini P, Lovat F, Carasi S, Pulvirenti A, Ferro A, et al. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PLoS One. 2013;8(2):e55910. PubMed PMID: 23405235. Pubmed Central PMCID: PMC3566108. Epub 2013/02/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7. PubMed PMID: 19204204. Pubmed Central PMCID: PMC2667820. Epub 2009/02/11.

    PubMed  PubMed Central  Google Scholar 

  24. Ebbert MT, Bastien RR, Boucher KM, Martin M, Carrasco E, Caballero R, et al. Characterization of uncertainty in the classification of multivariate assays: application to PAM50 centroid-based genomic predictors for breast cancer treatment plans. J Clin Bioinforma. 2011;1:37. PubMed PMID: 22196354. Pubmed Central PMCID: PMC3275466. Epub 2011/12/27.

    PubMed  PubMed Central  Google Scholar 

  25. Martinez-Outschoorn UE, Balliet R, Lin Z, Whitaker-Menezes D, Birbe RC, Bombonati A, et al. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies. Cell Cycle. 2012;11(23):4402–13. PubMed PMID: 23172369. Epub 2012/11/23.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. PubMed PMID: 23000897. Pubmed Central PMCID: 3465532.

    Google Scholar 

  27. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. PubMed PMID: 7545954. Epub 1994/10/07.

    PubMed  CAS  Google Scholar 

  28. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92. PubMed PMID: 8524414. Epub 1995/12/21.

    PubMed  CAS  Google Scholar 

  29. Vuillaume ML, Uhrhammer N, Vidal V, Vidal VS, Chabaud V, Jesson B, et al. Use of gene expression profiles of peripheral blood lymphocytes to distinguish BRCA1 mutation carriers in high risk breast cancer families. Cancer Inform. 2009;7:41–56. PubMed PMID: 19352458. Pubmed Central PMCID: PMC2664702. Epub 2009/04/09.

    PubMed  PubMed Central  Google Scholar 

  30. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12(1):68–78. PubMed PMID: 22193408.

    CAS  Google Scholar 

  31. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379–88. PubMed PMID: 16551709. Epub 2006/03/23.

    PubMed  CAS  Google Scholar 

  32. Joosse SA. BRCA1 and BRCA2: a common pathway of genome protection but different breast cancer subtypes. Nat Rev Cancer. 2012;12(5):372; author reply. PubMed PMID: 22525577.

    Google Scholar 

  33. Borresen AL, Andersen TI, Garber J, Barbier-Piraux N, Thorlacius S, Eyfjord J, et al. Screening for germ line TP53 mutations in breast cancer patients. Cancer Res. 1992;52(11):3234–6. PubMed PMID: 1591732. Epub 1992/06/01.

    PubMed  CAS  Google Scholar 

  34. Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, et al. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am J Hum Genet. 1997;61(6):1254–60. PubMed PMID: 9399897. Pubmed Central PMCID: PMC1716102. Epub 1997/12/18.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53. PubMed PMID: 11113065. Epub 2000/12/13.

    PubMed  CAS  Google Scholar 

  36. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38(8):873–5. PubMed PMID: 16832357. Epub 2006/07/13.

    PubMed  CAS  Google Scholar 

  37. Meijers-Heijboer H, Wijnen J, Vasen H, Wasielewski M, Wagner A, Hollestelle A, et al. The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet. 2003;72(5):1308–14. PubMed PMID: 12690581. Pubmed Central PMCID: PMC1180284. Epub 2003/04/12.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011;43(9):879–82. PubMed PMID: 21822267. Epub 2011/08/09.

    PubMed  CAS  Google Scholar 

  39. Orr N, Lemnrau A, Cooke R, Fletcher O, Tomczyk K, Jones M, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat Genet. 2012;44(11):1182–4. PubMed PMID: 23001122. Epub 2012/09/25.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39(2):165–7. PubMed PMID: 17200668. Pubmed Central PMCID: PMC2871593. Epub 2007/01/04.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41. PubMed PMID: 17033622. Epub 2006/10/13.

    PubMed  CAS  Google Scholar 

  42. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410–14. PubMed PMID: 20400964. Epub 2010/04/20.

    PubMed  CAS  Google Scholar 

  43. Shamseldin HE, Elfaki M, Alkuraya FS. Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J Med Genet. 2012;49(3):184–6. PubMed PMID: 22232082. Epub 2012/01/11.

    PubMed  CAS  Google Scholar 

  44. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42(6):504–7. PubMed PMID: 20453838. Epub 2010/05/11.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93. PubMed PMID: 17529967. Pubmed Central PMCID: PMC2714974. Epub 2007/05/29.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet. 2009;41(5):585–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009;41(5):579–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Gracia-Aznarez FJ, Fernandez V, Pita G, Peterlongo P, Dominguez O, de la Hoya M, et al. Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles. PLoS One. 2013;8(2):e55681. PubMed PMID: 23409019. Pubmed Central PMCID: 3568132.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Rebbeck TR, Mitra N, Domchek SM, Wan F, Friebel TM, Tran TV, et al. Modification of BRCA1-associated breast and ovarian cancer risk by BRCA1-interacting genes. Cancer Res. 2011;71(17):5792–805. PubMed PMID: 21799032. Pubmed Central PMCID: 3170727.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Walsh T, King MC. Ten genes for inherited breast cancer. Cancer Cell. 2007;11(2):103–5. PubMed PMID: 17292821.

    PubMed  CAS  Google Scholar 

  51. Solyom S, Patterson-Fortin J, Pylkas K, Greenberg RA, Winqvist R. Mutation screening of the MERIT40 gene encoding a novel BRCA1 and RAP80 interacting protein in breast cancer families. Breast Cancer Res Treat. 2010;120(1):165–8. PubMed PMID: 19572197. Pubmed Central PMCID: 2863093.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Karppinen SM, Erkko H, Reini K, Pospiech H, Heikkinen K, Rapakko K, et al. Identification of a common polymorphism in the TopBP1 gene associated with hereditary susceptibility to breast and ovarian cancer. Eur J Cancer. 2006;42(15):2647–52. PubMed PMID: 16930991.

    PubMed  CAS  Google Scholar 

  53. Going JJ, Nixon C, Dornan ES, Boner W, Donaldson MM, Morgan IM. Aberrant expression of TopBP1 in breast cancer. Histopathology. 2007;50(4):418–24. PubMed PMID: 17448016.

    PubMed  CAS  Google Scholar 

  54. Forma E, Krzeslak A, Bernaciak M, Romanowicz-Makowska H, Brys M. Expression of TopBP1 in hereditary breast cancer. Mol Biol Rep. 2012;39(7):7795–804. PubMed PMID: 22544570. Pubmed Central PMCID: 3358587.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9. PubMed PMID: 22722202.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67. PubMed PMID: 23325432. Epub 2013/01/18.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40(21):10596–613. PubMed PMID: 23002135. Pubmed Central PMCID: PMC3510492. Epub 2012/09/25.

    PubMed  PubMed Central  Google Scholar 

  58. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. PubMed PMID: 23287718.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. PubMed PMID: 23287722.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Hammoud SS, Cairns BR, Jones DA. Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol. 2013;25(2):177–83. PubMed PMID: 23402869. Epub 2013/02/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Asuthkar S, Velpula KK, Chetty C, Gorantla B, Rao JS. Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget. 2012;3(11):1439–54. PubMed PMID: 23183822. Epub 2012/11/28.

    PubMed  PubMed Central  Google Scholar 

  62. Lu F, Zhang HT. DNA methylation and nonsmall cell lung cancer. Anat Rec (Hoboken). 2011;294(11):1787–95. PubMed PMID: 21956844. Epub 2011/10/01.

    CAS  Google Scholar 

  63. Baylin SB. The cancer epigenome: its origins, contributions to tumorigenesis, and translational implications. Proc Am Thorac Soc. 2012;9(2):64–5. PubMed PMID: 22550245. Pubmed Central PMCID: PMC3359110. Epub 2012/05/03.

    PubMed  PubMed Central  Google Scholar 

  64. Swift-Scanlan T, Vang R, Blackford A, Fackler MJ, Sukumar S. Methylated genes in breast cancer: associations with clinical and histopathological features in a familial breast cancer cohort. Cancer Biol Ther. 2011;11(10):853–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Dejeux E, Ronneberg JA, Solvang H, Bukholm I, Geisler S, Aas T, et al. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer. 2010;9:68. PubMed PMID: 20338046. Pubmed Central PMCID: PMC2861056. Epub 2010/03/27.

    PubMed  PubMed Central  Google Scholar 

  66. Conklin MW, Keely PJ. Why the stroma matters in breast cancer: insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adh Migr. 2012;6(3):249–60. PubMed PMID: 22568982. Pubmed Central PMCID: 3427239.

    PubMed  PubMed Central  Google Scholar 

  67. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.

    PubMed  CAS  Google Scholar 

  68. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6. PubMed PMID: 11823860. Epub 2002/02/02.

    Google Scholar 

  69. Rakha EA, Ellis IO. Modern classification of breast cancer: should we stick with morphology or convert to molecular profile characteristics. Adv Anat Pathol. 2011;18(4):255–67. PubMed PMID: 21654357. Epub 2011/06/10.

    PubMed  Google Scholar 

  70. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. PubMed PMID: 23000897. Pubmed Central PMCID: PMC3465532. Epub 2012/09/25.

    Google Scholar 

  71. Chen HY, Yu SL, Li KC, Yang PC. Biomarkers and transcriptome profiling of lung cancer. Respirology. 2012;17(4):620–6. PubMed PMID: 22372638. Epub 2012/03/01.

    PubMed  Google Scholar 

  72. Langer CJ. Individualized therapy for patients with non-small cell lung cancer: emerging trends and challenges. Crit Rev Oncol Hematol. 2012;83(1):130–44. PubMed PMID: 22280915. Epub 2012/01/28. Eng.

    PubMed  Google Scholar 

  73. Vivekanandan P, Singh OV. High-dimensional biology to comprehend hepatocellular carcinoma. Expert Rev Proteomics. 2008;5(1):45–60. PubMed PMID: 18282123. Epub 2008/02/20.

    PubMed  CAS  Google Scholar 

  74. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. PubMed PMID: 19015660. Pubmed Central PMCID: PMC2949280. Epub 2008/11/19.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. PubMed PMID: 11689955. Epub 2001/11/02.

    PubMed  CAS  Google Scholar 

  76. Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med. 2012;18(7):1052–9. PubMed PMID: 22683778. Epub 2012/06/12.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. PubMed PMID: 22522925. Pubmed Central PMCID: PMC3440846. Epub 2012/04/24.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Kislinger T. Cancer informatics in the post genomic era. In: Rosen ST, series editor. Toward information-based medicine. Springer, New York; 2007.

    Google Scholar 

  79. Hommerson P, Khan AM, de Jong GJ, Somsen GW. Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application. Mass Spectrom Rev. 2011;30(6):1096–120. PubMed PMID: 21462232. Epub 2011/04/05.

    PubMed  CAS  Google Scholar 

  80. Brusniak MY, Chu CS, Kusebauch U, Sartain MJ, Watts JD, Moritz RL. An assessment of current bioinformatic solutions for analyzing LC-MS data acquired by selected reaction monitoring technology. Proteomics. 2012;12(8):1176–84. PubMed PMID: 22577019. Epub 2012/05/12.

    PubMed  CAS  Google Scholar 

  81. Eng JK, Searle BC, Clauser KR, Tabb DL. A face in the crowd: recognizing peptides through database search. Mol Cell Proteomics. 2011;10(11):R111.009522. PubMed PMID: 21876205. Pubmed Central PMCID: PMC3226415. Epub 2011/08/31.

    PubMed  PubMed Central  Google Scholar 

  82. Koh GC, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein-protein interaction networks. J Proteome Res. 2012;11(4):2014–31. PubMed PMID: 22385417. Epub 2012/03/06.

    PubMed  CAS  Google Scholar 

  83. Poultney CS, Greenfield A, Bonneau R. Integrated inference and analysis of regulatory networks from multi-level measurements. Methods Cell Biol. 2012;110:19–56. PubMed PMID: 22482944. Epub 2012/04/10.

    PubMed  Google Scholar 

  84. Chavan SS, Shaughnessy Jr JD, Edmondson RD. Overview of biological database mapping services for interoperation between different ‘omics’ datasets. Hum Genomics. 2011;5(6):703–8. PubMed PMID: 22155608. Pubmed Central PMCID: PMC3525252. Epub 2011/12/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Cohen A, Wang E, Chisholm KA, Kostyleva R, O’Connor-McCourt M, Pinto DM. A mass spectrometry-based plasma protein panel targeting the tumor microenvironment in patients with breast cancer. J Proteomics. 2012;81:135–47. PubMed PMID: 23174118.

    PubMed  Google Scholar 

  86. Pavlou MP, Dimitromanolakis A, Diamandis EP. Coupling proteomics and transcriptomics in the quest of subtype-specific proteins in breast cancer. Proteomics. 2013;13(7):1083–95. PubMed PMID: 23386393. Epub 2013/02/07.

    PubMed  CAS  Google Scholar 

  87. Lee HH, Lim CA, Cheong YT, Singh M, Gam LH. Comparison of protein expression profiles of different stages of lymph nodes metastasis in breast cancer. Int J Biol Sci. 2012;8(3):353–62. PubMed PMID: 22393307. Pubmed Central PMCID: PMC3291852. Epub 2012/03/07.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Greenwood C, Metodieva G, Al-Janabi K, Lausen B, Alldridge L, Leng L, et al. Stat1 and CD74 overexpression is co-dependent and linked to increased invasion and lymph node metastasis in triple-negative breast cancer. J Proteomics. 2012;75(10):3031–40. PubMed PMID: 22178447. Epub 2011/12/20.

    PubMed  CAS  Google Scholar 

  89. Van QN, Veenstra TD. How close is the bench to the bedside? Metabolic profiling in cancer research. Genome Med. 2009;1(1):5. PubMed PMID: 19348692. Pubmed Central PMCID: 2651582.

    PubMed  PubMed Central  Google Scholar 

  90. Cascante M, Benito A, Zanuy M, Vizan P, Marin S, de Atauri P. Metabolic network adaptations in cancer as targets for novel therapies. Biochem Soc Trans. 2010;38(5):1302–6. PubMed PMID: 20863303.

    PubMed  CAS  Google Scholar 

  91. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. PubMed PMID: 21258394.

    PubMed  CAS  Google Scholar 

  92. Frezza C, Gottlieb E. Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol. 2009;19(1):4–11. PubMed PMID: 19101633.

    PubMed  CAS  Google Scholar 

  93. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012;23(4):352–61. PubMed PMID: 22406683.

    PubMed  CAS  Google Scholar 

  94. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37. PubMed PMID: 21508971. Epub 2011/04/22.

    PubMed  CAS  Google Scholar 

  95. Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MS, Herwig R, et al. Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol. 2011;7(3):e1001113. PubMed PMID: 21483477. Pubmed Central PMCID: 3068923.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Brauer HA, Makowski L, Hoadley KA, Casbas-Hernandez P, Lang LJ, Roman-Perez E, et al. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res. 2013;19(3):571–85. PubMed PMID: 23236214. Epub 2012/12/14.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Chaudhri VK, Salzler GG, Dick SA, Buckman MS, Sordella R, Karoly ED, et al. Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol Cancer Res. 2013;11(6):579–92. PubMed PMID: 23475953. Epub 2013/03/12. Eng.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle. 2010;9(11):2201–19. PubMed PMID: 20519932. Epub 2010/06/04.

    PubMed  CAS  Google Scholar 

  99. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8(23):3984–4001. PubMed PMID: 19923890. Epub 2009/11/20.

    PubMed  CAS  Google Scholar 

  100. Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009;174(6):2023–34. PubMed PMID: 19411448. Pubmed Central PMCID: PMC2684168. Epub 2009/05/05.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, et al. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol. 2009;174(6):2035–43. PubMed PMID: 19411449. Pubmed Central PMCID: PMC2684169. Epub 2009/05/05.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Witkiewicz AK, Dasgupta A, Nguyen KH, Liu C, Kovatich AJ, Schwartz GF, et al. Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther. 2009;8(11):1071–9. PubMed PMID: 19502809. Epub 2009/06/09.

    PubMed  CAS  Google Scholar 

  103. Jerby L, Wolf L, Denkert C, Stein GY, Hilvo M, Oresic M, et al. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res. 2012;72(22):5712–20. PubMed PMID: 22986741. Epub 2012/09/19.

    PubMed  CAS  Google Scholar 

  104. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476(7360):346–50. PubMed PMID: 21760589. Pubmed Central PMCID: PMC3353325. Epub 2011/07/16.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 2011;7(8):e1002229. PubMed PMID: 21852960. Pubmed Central PMCID: PMC3154963. Epub 2011/08/20.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Davison CA, Schafer ZT. Keeping a breast of recent developments in cancer metabolism. Curr Drug Targets. 2010;11(9):1112–20. PubMed PMID: 20545609. Epub 2010/06/16.

    PubMed  CAS  Google Scholar 

  107. Baselga J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist. 2011;16 Suppl 1:12–9. PubMed PMID: 21278436. Epub 2011/02/10.

    PubMed  Google Scholar 

  108. Deblois G, Giguere V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer. 2013;13(1):27–36. PubMed PMID: 23192231. Epub 2012/11/30.

    PubMed  CAS  Google Scholar 

  109. Ayoub N, Lucas C, Kaddoumi A. Genomics and pharmacogenomics of breast cancer: current knowledge and trends. Asian Pac J Cancer Prev. 2011;12(5):1127–40. PubMed PMID: 21875255. Epub 2011/08/31.

    PubMed  Google Scholar 

  110. Dictionary OE. “ome, comb. form”: Oxford University press, 2013. OED online.

    Google Scholar 

  111. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. PubMed PMID: 11752295. Pubmed Central PMCID: PMC99122. Epub 2001/12/26.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Bono H, Kasukawa T, Hayashizaki Y, Okazaki Y. READ: RIKEN expression array database. Nucleic Acids Res. 2002;30(1):211–13. PubMed PMID: 11752296. Pubmed Central PMCID: PMC99103. Epub 2001/12/26.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Tong W, Harris S, Cao X, Fang H, Shi L, Sun H, et al. Development of public toxicogenomics software for microarray data management and analysis. Mutat Res. 2004;549(1–2):241–53. PubMed PMID: 15120974. Epub 2004/05/04.

    PubMed  CAS  Google Scholar 

  114. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, et al. ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2005;33(Database issue):D553–5. PubMed PMID: 15608260. Pubmed Central PMCID: PMC540010. Epub 2004/12/21.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009;10(11):R130. PubMed PMID: 19919682. Pubmed Central PMCID: PMC3091323. Epub 2009/11/19.

    PubMed  PubMed Central  Google Scholar 

  116. Ivliev AE, t Hoen PA PA, Villerius MP, den Dunnen JT, Brandt BW. Microarray retriever: a web-based tool for searching and large scale retrieval of public microarray data. Nucleic Acids Res. 2008;36(Web Server issue):W327–31. PubMed PMID: 18463138. Pubmed Central PMCID: PMC2447788. Epub 2008/05/09.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Hellwinkel OJ, Sellier C, Sylvester YM, Brase JC, Isbarn H, Erbersdobler A, et al. A cancer-indicative microRNA pattern in normal prostate tissue. Int J Mol Sci. 2013;14(3):5239–49. PubMed PMID: 23459235. Epub 2013/03/06.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Yyusnita N, Zakiah I, Chang KM, Purushotaman VS, Zubaidah Z Z, et al. MicroRNA (miRNA) expression profiling of peripheral blood samples in multiple myeloma patients using microarray. Malays J Pathol. 2012;34(2):133–43.

    PubMed  CAS  Google Scholar 

  119. Zhang N, Wang X, Huo Q, Li X, Wang H, Schneider P, et al. The oncogene metadherin modulates the apoptotic pathway based on the tumor necrosis factor superfamily member TRAIL in breast cancer. J Biol Chem. 2013;288(13):9396–407. PubMed PMID: 23408429. Epub 2013/02/15.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Ma Q, Wang X, Li Z, Li B, Ma F, Peng L, et al. MicroRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep. 2013;29(4):1652–8. PubMed PMID: 23380758. Epub 2013/02/06.

    PubMed  CAS  Google Scholar 

  121. Santhi WS, Prathibha R, Charles S, Anurup KG, Reshmi G, Ramachandran S, et al. Oncogenic microRNAs as biomarkers of oral tumorigenesis and minimal residual disease. Oral Oncol. 2013;49(6):567–75. PubMed PMID: 23380617. Epub 2013/02/06.

    PubMed  CAS  Google Scholar 

  122. Diaz-Garcia CV, Agudo-Lopez A, Perez C, Lopez-Martin JA, Rodriguez-Peralto JL, de Castro J, et al. DICER1, DROSHA and miRNAs in patients with non-small cell lung cancer: implications for outcomes and histologic classification. Carcinogenesis. 2013;34(5):1031–8. PubMed PMID: 23349018. Epub 2013/01/26.

    PubMed  CAS  Google Scholar 

  123. Zeng L, Yu J, Huang T, Jia H, Dong Q, He F, et al. Differential combinatorial regulatory network analysis related to venous metastasis of hepatocellular carcinoma. BMC Genomics. 2012;13 Suppl 8:14. PubMed PMID: 23282077. Pubmed Central PMCID: PMC3535701. Epub 2013/01/11.

    Google Scholar 

  124. Li X, Ling N, Bai Y, Dong W, Hui GZ, Liu D, et al. MiR-16-1 plays a role in reducing migration and invasion of glioma cells. Anat Rec (Hoboken). 2013;296(3):427–32. PubMed PMID: 23175429. Epub 2012/11/24.

    CAS  Google Scholar 

  125. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792(6):497–505. PubMed PMID: 19268705. Epub 2009/03/10.

    PubMed  CAS  Google Scholar 

  126. Teng G, Papavasiliou FN. Shhh! Silencing by microRNA-155. Philos Trans R Soc Lond B Biol Sci. 2009;364(1517):631–7. PubMed PMID: 19008191. Pubmed Central PMCID: PMC2660923. Epub 2008/11/15.

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Vosa U, Vooder T, Kolde R, Fischer K, Valk K, Tonisson N, et al. Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer. 2011;50(10):812–22. PubMed PMID: 21748820. Epub 2011/07/13.

    PubMed  CAS  Google Scholar 

  128. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, et al. MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. J Clin Invest. 2013;123(2):566–79. PubMed PMID: 23321667. Pubmed Central PMCID: PMC3561816. Epub 2013/01/17.

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Wang YX, Zhang XY, Zhang BF, Yang CQ, Chen XM, Gao HJ. Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J Dig Dis. 2010;11(1):50–4. PubMed PMID: 20132431. Epub 2010/02/06.

    PubMed  Google Scholar 

  130. Mansour WY, Bogdanova NV, Kasten-Pisula U, Rieckmann T, Kocher S, Borgmann K, et al. Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma. Radiother Oncol. 2013;106(1):147–54. PubMed PMID: 23199656. Epub 2012/12/04.

    PubMed  CAS  Google Scholar 

  131. Zhang X, Cui L, Ye G, Zheng T, Song H, Xia T, et al. Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. 2012;33(6):2349–55. PubMed PMID: 22926798. Epub 2012/08/29.

    PubMed  CAS  Google Scholar 

  132. Zhang Y, Gong W, Dai S, Huang G, Shen X, Gao M, et al. Downregulation of human farnesoid X receptor by miR-421 promotes proliferation and migration of hepatocellular carcinoma cells. Mol Cancer Res. 2012;10(4):516–22. PubMed PMID: 22446874. Epub 2012/03/27.

    PubMed  CAS  Google Scholar 

  133. Hao J, Zhang S, Zhou Y, Liu C, Hu X, Shao C. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochem Biophys Res Commun. 2011;406(4):552–7. PubMed PMID: 21352803. Epub 2011/03/01.

    PubMed  CAS  Google Scholar 

  134. Ostling P, Leivonen SK, Aakula A, Kohonen P, Makela R, Hagman Z, et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res. 2011;71(5):1956–67. PubMed PMID: 21343391. Epub 2011/02/24.

    PubMed  Google Scholar 

  135. Cui XY, Guo YJ, Yao HR. Analysis of microRNA in drug-resistant breast cancer cell line MCF-7/ADR. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28(10):1813–15. PubMed PMID: 18971180. Epub 2008/10/31. Chinese.

    PubMed  CAS  Google Scholar 

  136. Luo M, Shen D, Zhou X, Chen X, Wang W. MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surgery. 2013;153(6):836–47. PubMed PMID: 23453369. Epub 2013/03/05.

    PubMed  Google Scholar 

  137. Shen L, Li J, Xu L, Ma J, Li H, Xiao X, et al. miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 2012;3(3):475–80. PubMed PMID: 22969914. Pubmed Central PMCID: PMC3438749. Epub 2012/09/13.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Poell JB, van Haastert RJ, de Gunst T, Schultz IJ, Gommans WM, Verheul M, et al. A functional screen identifies specific microRNAs capable of inhibiting human melanoma cell viability. PLoS One. 2012;7(8):e43569. PubMed PMID: 22927992. Pubmed Central PMCID: PMC3425484. Epub 2012/08/29.

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene. 2012;32(15):1910–20. PubMed PMID: 22710713. Epub 2012/06/20.

    PubMed  PubMed Central  Google Scholar 

  140. Yang C, Wang C, Chen X, Chen S, Zhang Y, Zhi F, et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. 2013;132(1):116–27. PubMed PMID: 22674182. Epub 2012/06/08.

    PubMed  CAS  Google Scholar 

  141. Lajer CB, Garnaes E, Friis-Hansen L, Norrild B, Therkildsen MH, Glud M, et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer. 2012;106(9):1526–34. PubMed PMID: 22472886. Pubmed Central PMCID: PMC3341860. Epub 2012/04/05.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B, et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol. 2012;29(1):384–91. PubMed PMID: 21258880. Epub 2011/01/25.

    PubMed  CAS  Google Scholar 

  143. Kalev P, Simicek M, Vazquez I, Munck S, Chen L, Soin T, et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 2012;72(24):6414–24. PubMed PMID: 23087057. Epub 2012/10/23.

    PubMed  CAS  Google Scholar 

  144. Cheng Y, Liu W, Kim ST, Sun J, Lu L, Sun J, et al. Evaluation of PPP2R2A as a prostate cancer susceptibility gene: a comprehensive germline and somatic study. Cancer Genet. 2011;204(7):375–81. PubMed PMID: 21872824. Epub 2011/08/30.

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Tang B, Testa JR, Kruger WD. Increasing the therapeutic index of 5-fluorouracil and 6-thioguanine by targeting loss of MTAP in tumor cells. Cancer Biol Ther. 2012;13(11):1082–90. PubMed PMID: 22825330. Pubmed Central PMCID: PMC3461815. Epub 2012/07/25.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Taylor JL, Szmulewitz RZ, Lotan T, Hickson J, Griend DV, Yamada SD, et al. New paradigms for the function of JNKK1/MKK4 in controlling growth of disseminated cancer cells. Cancer Lett. 2008;272(1):12–22. PubMed PMID: 18572308. Epub 2008/06/24.

    PubMed  CAS  Google Scholar 

  147. Ngeow J, Heald B, Rybicki LA, Orloff MS, Chen JL, Liu X, et al. Prevalence of germline PTEN, BMPR1A, SMAD4, STK11, and ENG mutations in patients with moderate-load colorectal polyps. Gastroenterology. 2013;144(7):1402–9. PubMed PMID: 23399955. Epub 2013/02/13. Eng.

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell. 2013;23(2):143–58. PubMed PMID: 23352126. Pubmed Central PMCID: PMC3579627. Epub 2013/01/29.

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Lo B, Strasser G, Sagolla M, Austin CD, Junttila M, Mellman I. Lkb1 regulates organogenesis and early oncogenesis along AMPK-dependent and -independent pathways. J Cell Biol. 2012;199(7):1117–30. PubMed PMID: 23266956. Pubmed Central PMCID: PMC3529533. Epub 2012/12/26.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Groschl B, Bettstetter M, Giedl C, Woenckhaus M, Edmonston T, Hofstadter F, et al. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int J Cancer. 2013;132(7):1537–46. PubMed PMID: 22965873. Epub 2012/09/12.

    PubMed  Google Scholar 

  151. Chimge NO, Frenkel B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene. 2012;32(17):2121–30. PubMed PMID: 23045283. Epub 2012/10/10.

    PubMed  Google Scholar 

  152. Rossetti S, Sacchi N. RUNX1: a microRNA hub in normal and malignant hematopoiesis. Int J Mol Sci. 2013;14(1):1566–88. PubMed PMID: 23344057. Pubmed Central PMCID: PMC3565335. Epub 2013/01/25.

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Lei T, Zhao X, Jin S, Meng Q, Zhou H, Zhang M. Discovery of potential bladder cancer biomarkers by comparative urine proteomics and analysis. Clin Genitourin Cancer. 2013;11(1):56–62. PubMed PMID: 22982111. Epub 2012/09/18.

    PubMed  Google Scholar 

  154. Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. E-cadherin alterations in hereditary disorders with emphasis on hereditary diffuse gastric cancer. Prog Mol Biol Transl Sci. 2013;116:337–59. PubMed PMID: 23481202. Epub 2013/03/14.

    PubMed  CAS  Google Scholar 

  155. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta. 2012;1826(1):23–31. PubMed PMID: 22440943. Pubmed Central PMCID: PMC3362679. Epub 2012/03/24.

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Manning AL, Dyson NJ. pRB, a tumor suppressor with a stabilizing presence. Trends Cell Biol. 2011;21(8):433–41. PubMed PMID: 21664133. Pubmed Central PMCID: PMC3149724. Epub 2011/06/15.

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Jiang Z, Jones R, Liu JC, Deng T, Robinson T, Chung PE, et al. RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell Cycle. 2011;10(10):1563–70. PubMed PMID: 21502814. Epub 2011/04/20.

    PubMed  CAS  Google Scholar 

  158. Jhaveri K, Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. PubMed PMID: 22959035. Epub 2012/09/11.

    PubMed  CAS  Google Scholar 

  159. Chiosis G, Dickey CA, Johnson JL. A global view of Hsp90 functions. Nat Struct Mol Biol. 2013;20(1):1–4. PubMed PMID: 23288357. Epub 2013/01/05.

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Cizkova M, Susini A, Vacher S, Cizeron-Clairac G, Andrieu C, Driouch K, et al. PIK3CA mutation impact on survival in breast cancer patients and in ERalpha, PR and ERBB2-based subgroups. Breast Cancer Res. 2012;14(1):R28. PubMed PMID: 22330809. Pubmed Central PMCID: PMC3496146. Epub 2012/02/15.

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Li WD, Li QR, Xu SN, Wei FJ, Ye ZJ, Cheng JK, et al. Exome sequencing identifies an MLL3 gene germ line mutation in a pedigree of colorectal cancer and acute myeloid leukemia. Blood. 2013;121(8):1478–9. PubMed PMID: 23429989. Epub 2013/02/23.

    PubMed  CAS  Google Scholar 

  162. Je EM, Lee SH, Yoo NJ, Lee SH. Mutational and expressional analysis of MLL genes in gastric and colorectal cancers with microsatellite instability. Neoplasma. 2013;60(2):188–95. PubMed PMID: 23259788. Epub 2012/12/25.

    PubMed  CAS  Google Scholar 

  163. Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15(2):201–13. PubMed PMID: 23354167. Epub 2013/01/29.

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Nguyen AH, Tremblay M, Haigh K, Koumakpayi IH, Paquet M, Pandolfi PP, et al. Gata3 antagonizes cancer progression in Pten-deficient prostates. Hum Mol Genet. 2013;22(12):2400–10. PubMed PMID: 23428429. Epub 2013/02/23.

    PubMed  CAS  Google Scholar 

  165. Theodorou V, Stark R, Menon S, Carroll JS. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res. 2013;23(1):12–22. PubMed PMID: 23172872. Pubmed Central PMCID: PMC3530671. Epub 2012/11/23.

    PubMed  CAS  PubMed Central  Google Scholar 

  166. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60. PubMed PMID: 22722193. Pubmed Central PMCID: PMC3383766. Epub 2012/06/23.

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Fanale D, Amodeo V, Corsini LR, Rizzo S, Bazan V, Russo A. Breast cancer genome-wide association studies: there is strength in numbers. Oncogene. 2012;31(17):2121–8. PubMed PMID: 21996731. Epub 2011/10/15.

    PubMed  CAS  Google Scholar 

  168. Wu X, Marmarelis ME, Hodi FS. Activity of the heat shock protein 90 inhibitor ganetespib in melanoma. PLoS One. 2013;8(2):e56134. PubMed PMID: 23418523. Pubmed Central PMCID: PMC3572008. Epub 2013/02/19.

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Sharma P, Patel D, Chaudhary J. Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B. Cancer Med. 2012;1(2):187–97. PubMed PMID: 23342268. Pubmed Central PMCID: PMC3544440. Epub 2013/01/24.

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Hodul PJ, Dong Y, Husain K, Pimiento JM, Chen J, Zhang A, et al. Vitamin E delta-tocotrienol induces p27(Kip1)-dependent cell-cycle arrest in pancreatic cancer cells via an E2F-1-dependent mechanism. PLoS One. 2013;8(2):e52526. PubMed PMID: 23393547. Pubmed Central PMCID: PMC3564846. Epub 2013/02/09.

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Burgucu D, Guney K, Sahinturk D, Ozbudak IH, Ozel D, Ozbilim G, et al. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma. BMC Cancer. 2012;12:481. PubMed PMID: 23082988. Pubmed Central PMCID: PMC3517435. Epub 2012/10/23.

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Boyd SC, Mijatov B, Pupo GM, Tran SL, Gowrishankar K, Shaw HM, et al. Oncogenic B-RAF(V600E) signaling induces the T-Box3 transcriptional repressor to repress E-cadherin and enhance melanoma cell invasion. J Invest Dermatol. 2012;133(5):1269–77. PubMed PMID: 23190890. Epub 2012/11/30.

    PubMed  PubMed Central  Google Scholar 

  173. Kundu M, Liu PP. Function of the inv(16) fusion gene CBFB-MYH11. Curr Opin Hematol. 2001;8(4):201–5. PubMed PMID: 11561156. Epub 2001/09/19.

    PubMed  CAS  Google Scholar 

  174. Davis JN, Rogers D, Adams L, Yong T, Jung JS, Cheng B, et al. Association of core-binding factor beta with the malignant phenotype of prostate and ovarian cancer cells. J Cell Physiol. 2010;225(3):875–87. PubMed PMID: 20607802. Epub 2010/07/08.

    PubMed  CAS  Google Scholar 

  175. Ward AF, Braun BS, Shannon KM. Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 2012;120(17):3397–406. PubMed PMID: 22898602. Pubmed Central PMCID: PMC3482854. Epub 2012/08/18.

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Patil S, Chamberlain RS. Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist. 2012;17(1):101–16. PubMed PMID: 22240541. Pubmed Central PMCID: PMC3267808. Epub 2012/01/14.

    PubMed  PubMed Central  Google Scholar 

  177. Sangha N, Wu R, Kuick R, Powers S, Mu D, Fiander D et al. Neurofibromin 1 (NF1) defects are common in human ovarian serous carcinomas and co-occur with TP53 mutations. Neoplasia. 2008;10(12):1362––72, following 72. PubMed PMID: 19048115. Pubmed Central PMCID: PMC2586687. Epub 2008/12/03.

    Google Scholar 

  178. Cawkwell L, Lewis FA, Quirke P. Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer. 1994;70(5):813–18. PubMed PMID: 7947085. Pubmed Central PMCID: PMC2033544. Epub 1994/11/01.

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Filip AA. New boys in town: prognostic role of SF3B1, NOTCH1 and other cryptic alterations in chronic lymphocytic leukemia and how it works. Leuk Lymphoma. 2013;54(9):1876–81. PubMed PMID: 23343182. Epub 2013/01/25.

    PubMed  CAS  Google Scholar 

  180. Harbour JW, Roberson ED, Anbunathan H, Onken MD, Worley LA, Bowcock AM. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet. 2013;45(2):133–5. PubMed PMID: 23313955. Epub 2013/01/15.

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405. PubMed PMID: 23103869. Pubmed Central PMCID: PMC3530898. Epub 2012/10/30.

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Sawai CM, Freund J, Oh P, Ndiaye-Lobry D, Bretz JC, Strikoudis A, et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell. 2012;22(4):452–65. PubMed PMID: 23079656. Pubmed Central PMCID: PMC3493168. Epub 2012/10/20.

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Meng X, Lu P, Bai H, Xiao P, Fan Q. Transcriptional regulatory networks in human lung adenocarcinoma. Mol Med Rep. 2012;6(5):961–6. PubMed PMID: 22895549, Epub 2012/08/17.

    PubMed  CAS  Google Scholar 

  184. Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis. 2012;33(5):1113–20. PubMed PMID: 22362728. Pubmed Central PMCID: PMC3334515. Epub 2012/03/01.

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Pignataro L, Sambataro G, Pagani D, Pruneri G. Clinico-prognostic value of D-type cyclins and p27 in laryngeal cancer patients: a review. Acta Otorhinolaryngol Ital. 2005;25(2):75–85. PubMed PMID: 16116829. Pubmed Central PMCID: PMC2639874. Epub 2005/08/25.

    PubMed  CAS  PubMed Central  Google Scholar 

  186. Inoue J, Otsuki T, Hirasawa A, Imoto I, Matsuo Y, Shimizu S, et al. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Pathol. 2004;165(1):71–81. PubMed PMID: 15215163. Pubmed Central PMCID: PMC1618545. Epub 2004/06/25.

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Walker G, MacLeod K, Williams AR, Cameron DA, Smyth JF, Langdon SP. Estrogen-regulated gene expression predicts response to endocrine therapy in patients with ovarian cancer. Gynecol Oncol. 2007;106(3):461–8. PubMed PMID: 17624412. Epub 2007/07/13.

    PubMed  CAS  Google Scholar 

  188. Alessi P, Leali D, Camozzi M, Cantelmo A, Albini A, Presta M. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist. Eur Cytokine Netw. 2009;20(4):225–34. PubMed PMID: 20167562. Epub 2010/02/20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Gunduz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Moroski-Erkul, C.A., Yilmaz, B., Gunduz, E., Gunduz, M. (2014). Omics of Hereditary Breast Cancer. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_2

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics