Skip to main content

Discovery of a First-in-Class Drug, a Prostaglandin D2 Antagonist, for the Treatment of Allergic Diseases

  • Conference paper
Molecular Imaging for Integrated Medical Therapy and Drug Development

Abstract

Prostaglandin D2 (PGD2) is a major lipid mediator produced by mast cells in response to IgE-dependent stimuli. In patients with allergic diseases such as allergic rhinitis and asthma, the level of PGD2 is known to increase in nasal and bronchial lavage fluids after allergen challenge. Although PGD2 has been reported to exert a variety of inflammatory effects such as increases in nasal airway resistance and vascular permeability and eosinophil infiltration, there are few reports on the efficacy of PGD2 receptor (DP1) antagonists, either in subjects with allergic diseases or in animal models. In 1994 we started a PGD2 project to discover DP1 antagonists for the treatment of allergic diseases and. by carrying out structure-activity relationship studies, we eventually established S-5751 as a candidate first-in-class drug. In vivo pharmacology studies demonstrated that it dramatically inhibited antigen-induced nasal congestion and inflammatory cell migration in allergic rhinitis models as well as dramatically suppressing bronchial hyper-responsiveness and lung inflammation in asthma models. In 2000, the world’s first phase 2 clinical study with a DP1 antagonist was carried out in patients with allergic rhinitis. However, no significant efficacy was shown, although some favorable findings were seen in a subanalysis. Based on pharmacokinetics (PK)/pharmacodynamics (PD) analysis in the human subjects and animals used for pharmacology studies, we speculated that the failure of the phase 2 study was due to insufficient exposure in humans compared to animal models rather than being due to a minor role of PGD2 in the pathogenesis of allergic diseases. Subsequently, a structure-activity relationship study was conducted again, using alternative lead compounds and in 2007 we found a back-up compound. S-555739, in which the PK profile and DP1 antagonistic activity was markedly improved. Phase 1 studies have demonstrated that S-555739 is well tolerated and shows a good PK profile with once-a-day dosing, and now a phase 2 study is being planned. Using S-555739, not only the potential of a DP1 antagonist as a first-in-class drug in the treatment of allergic diseases but also the role of PGD2 in the pathogenesis of allergic diseases will be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lewis RA, Soter NA, Diamond PT et al (1982) Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J Immunol 129: 1627–1631

    CAS  PubMed  Google Scholar 

  2. Naclerio RM, Meier HL, Kagey-Sobotka A et al ( 1983) Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis 128: 597–602

    CAS  PubMed  Google Scholar 

  3. Hirai H, Tanaka K, Yoshie O et al (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193: 255–261

    Article  CAS  PubMed  Google Scholar 

  4. Matsuoka T, Hirata M, Tanaka H et al (2000) Prostaglandin D2 as a mediator of allergic asthma. Science 287: 2013–2017

    Article  CAS  PubMed  Google Scholar 

  5. Doyle WJ, Boehm S, Skoner DP (1990) Physiologic responses to intranasal dose-response challenges with histamine, methacholine, bradykinin, and prostaglandin in adult volunteers with and without nasal allergy. J Allergy Clin Immunol 86: 924–935

    Article  CAS  PubMed  Google Scholar 

  6. Johnston SL, Smith S, Harrison J et al (1993) The effect of BAY u 3405, a thromboxane receptor antagonist, on prostaglandin D2-induced nasal blockage. J Allergy Clin Immunol 91: 903–909

    Article  CAS  PubMed  Google Scholar 

  7. Tsuri T, Honma T, Hiramatzu Y et al (1997) Bicyclo[2.2.1]heptane and 6,6-dimethylbicyclo [3.1.1]heptane derivatives: orally active, potent, and selective prostaglandin D2 receptor antagonists. J Med Chem 40: 3504–3507

    Article  CAS  PubMed  Google Scholar 

  8. Mitzumori S. Tsuri T, Honma T et al (2003) Synthesis and biological activity of various derivatives of a novel class of potent, selective, and orally active prostaglandin D2 receptor antagonists. 2. 6, 6-Dimethylbicyclo[3.1.1]heptane derivatives. J Med Chem 46: 2446–2455

    Article  CAS  Google Scholar 

  9. Arimura A, Yasui K, Kishino J et al (2001) Prevention of allergic inflammation by a novel prostaglandin receptor antagonist, S-5751. J Pharmacol Exp Ther 298: 411–419.

    CAS  PubMed  Google Scholar 

  10. Yasui K, Asanuma F, Hirano Y et al (2007) Contribution of prostaglandin D2 via prostanoid DP receptor to nasal hyperresponsiveness in guinea pigs repeatedly exposed to antigen. Eur J Pharmacol 578: 286–291

    Article  PubMed  CAS  Google Scholar 

  11. Naclerio RM (1991) Allergic rhinitis. N Engl J Med 325: 860–869

    Article  CAS  PubMed  Google Scholar 

  12. Abraham WM, Shichijo M, Deguchi M et al (2007) A prostaglandin D2 receptor antagonist modifies experimental asthma in sheep. Am J Respir Crit Care Med 175:A560

    Google Scholar 

  13. Van-Hecken A, Depre M, De Lepeleire I et al (2007) The effect of MK-0524, a prostaglandin D2 receptor antagonist, on prostaglandin D2-induced nasal airway obstruction in healthy volunteers. Eur J Clin Pharmacol 63: 135–141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Arimura, A. (2010). Discovery of a First-in-Class Drug, a Prostaglandin D2 Antagonist, for the Treatment of Allergic Diseases. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_27

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics