Skip to main content

Abstract

The role of natural products in drug discovery has suffered ups and downs during the past few years. Recently, and as the number of classical drugs has not been increasing greatly, it seems that pharmaceutical companies are looking again towards nature as an inspiration for new drugs. Especially interesting has been the fact that during the past few years the first drugs based on natural marine products have been introduced in the markel. showing the enormous potential of the sea as a source of drugs. One of the main problems associated with the use of natural products as therapeutics is their poor pharmacokinetic properties. A strategy for improving these properties is through their chemical modification, which is exemplified herein by work on such structural edition of two natural products (thiocoraline and lamellarin) currently being carried out at our laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gray NS (2006) Drug discovery through industry-academic partnerships. Nature Chem Biol 2: 643–649

    Article  Google Scholar 

  2. Cavalla D (2003) The extended pharmaceutical enterprise. Drug Discov Today 8: 267–274

    Article  PubMed  Google Scholar 

  3. Martin YC, Critchlow RE ( 1999) Beyond mere diversity: tailoring combinatorial libraries for drug discovery. J Comb Chem 1: 32–15

    Article  CAS  PubMed  Google Scholar 

  4. Burrill & Company (2008) Analysis for pharmaceutical research and manufacturers of America

    Google Scholar 

  5. Hughes B (2009) 2008 FDA Drug approvals. Nat Rev Drug Discov 8: 93–96

    Article  PubMed  Google Scholar 

  6. Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12: 306–317

    Article  CAS  PubMed  Google Scholar 

  7. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037

    Article  CAS  PubMed  Google Scholar 

  8. Newman DJ, Cragg GM (2005) The discovery of anticancer drugs from natural sources. In: Zhang L, Demain AL (eds) Natural products. Humana, Totowa, NJ, pp 129–168

    Chapter  Google Scholar 

  9. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 Years. J Nat Prod 70: 461–477

    Article  CAS  PubMed  Google Scholar 

  10. Butler MS, Newman DJ (2008) Mother nature’s gifts to diseases of man: the impact of natural products on anti-infective, anticholestemics and anticancer drug discovery. Prog Drug Res 65: 3–44

    Google Scholar 

  11. Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43: 218–227

    CAS  PubMed  Google Scholar 

  12. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51: 2589–2599

    Article  CAS  PubMed  Google Scholar 

  13. Ganesan A (2004) Natural products as a hunting ground for combinatorial chemistry. Curr Opin Biotechnol 15: 584–590

    Article  CAS  PubMed  Google Scholar 

  14. Bruckdorfer T, Marder O, Albericio F (2004) From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol 5: 29–43

    Article  CAS  PubMed  Google Scholar 

  15. Sehgal A (2006) New applications in discovery, manufacturing, and therapeutics. In: Research and markets. Dublin, Ireland

    Google Scholar 

  16. Ayoub M, Scheidegger D (2006) Peptide drugs, overcoming the challenges, a growing business. Chem Today 24: 46–48

    CAS  Google Scholar 

  17. Zompra AZ, Galanis AS, Werbitzky O et al (2009) Manufacturing peptides as active pharmaceutical ingredients (API). Future Med Chem 1: 361–377

    Article  Google Scholar 

  18. Hill RA (2008) Marine natural products. Ann Rep Prog Chem, Section B: Organic Chem, 104: 127–141

    Article  CAS  Google Scholar 

  19. Simmons TL, Andrianasolo E, McPhail K et al (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4: 333–342

    CAS  PubMed  Google Scholar 

  20. Bowling JJ, Kochanowska AJ, Kasanah N et al (2007) Nature’s bounty—drug discovery from the sea. Exp Op Drug Disc 2: 1505–1522

    Article  CAS  Google Scholar 

  21. Fusetami M (ed) (2000) Drugs from the sea. S Karger, Berlin

    Google Scholar 

  22. Molinski TF, Dalisay DS, Lievens SL et al (2009) Drug development from marine natural products. Nat Rev Drug Discov 8: 69–85

    Article  CAS  PubMed  Google Scholar 

  23. López-Macià A, Jiménez JC, Royo M et al (2001) Synthesis and structural determination of Kahalalide F. J Am Chem Soc 123: 11398–11401

    Article  PubMed  Google Scholar 

  24. Jou G, González I, Albericio F et al (1997) New syntheses of the didemnins: total synthesis of dehydrodidemnin B based upon two novel routes to didemnin A. Use of uronium and phosphonium salt coupling reagent in peptide synthesis in solution. J Org Chem 62: 354–366

    Article  CAS  PubMed  Google Scholar 

  25. Romero F, Espliego F, Perez Baz J et al (1997) Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot 50: 734–737

    CAS  PubMed  Google Scholar 

  26. Erba E, Bergamaschi D, Ronzoni S et al (1999) Mode of action of thiocoraline, a natural marine compound with anti-tumor activity. Br J Cancer 80: 971–980

    Article  CAS  PubMed  Google Scholar 

  27. Bayó N, Fernández A, Riego E, et al (2006) Solid-phase syntheses of azathiocoralines. Chem Eur J 12: 9001–9009

    Article  Google Scholar 

  28. Tulla-Puche J, Bayó-Puxan N, Moreno JA et al (2007) Solid-phase synthesis of oxathiocora-line by a key intermolecular disulfide dimer. J Am Chem Soc 129: 5322–5323

    Article  CAS  PubMed  Google Scholar 

  29. Tulla-Puche J, Marcucci E, Bayó-Puxan N et al (2009) N-Me amide as synthetic surrogate for the thioester moiety in thiocoraline. J Med Chem 52: 834–839

    Article  CAS  PubMed  Google Scholar 

  30. Pla D, Albericio F, Álvarez M (2008) Recent advances in lamellarin alkaloids: isolation, synthesis and activity. Anti-Cancer Agents Med Chem 8: 746–760

    CAS  Google Scholar 

  31. Facompré M, Tardy C, Bal-Mahieu C et al (2003) Lamellarin D: a novel potent inhibitor of topoisomerase I. Cancer Res 63: 7392–7399

    PubMed  Google Scholar 

  32. Vanhuyse M, Kluza J, Tardy C et al (2005) Lamellarin D: a novel pro-apoptotic agent from marine origin insensitive to P-glycoprotein-mediated drug efflux. Cancer Lett 221: 165–175

    Article  CAS  PubMed  Google Scholar 

  33. Pla D, Marchal A, Olsen CA et al (2005) Modular total synthesis of lamellarin D. J Org Chem 70: 8231–8234

    Article  CAS  PubMed  Google Scholar 

  34. Pla D, Marchal A, Olsen CA et al (2006) Synthesis and structure-activity relationship study of potent cytotoxic analogues of the marine alkaloid lamellarin D. J Med Chem 49: 3257–3268

    Article  CAS  PubMed  Google Scholar 

  35. Pla D, Francesch A, Calvo P et al (2009) Lamellarin D Bioconjugates I: Synthesis and cellular internalization of PEG-derivatives. Bioconjugate Chem 20: 1100–1111

    Article  CAS  Google Scholar 

  36. Pla D, Martí M, Farrera-Sinfreu J et al (2009) Lamellarin D bioconjugates II: Synthesis and cellular internalization of dendrimer and nuclear location signal derivatives. Bioconjug Chem 20:1112–1121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Albericio, F., Álvarez, M., Cuevas, C., Francesch, A., Pla, D., Tulla-Puche, J. (2010). The Sea as a Source of New Drugs. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_24

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics