Skip to main content

Organotins (OTs) are used in a variety of consumer and industrial products such as marine antifouling paints, agricultural pesticides, preservatives, and plastic stabilizers. In particular, butyltins (BTs) and phenyltins (PTs) have been extensively used in boat paints because of their excellent and long-lasting antifouling properties. However, it is well known that BTs and PTs leaching from boats can accumulate in tissues of aquatic organisms causing various deleterious effects.

To understand the contamination status of OTs from fresh water to deep sea ecosystems, various fish species are used as bioindicators. Furthermore, many fish species are economically important as food, thus, to examine the pollution level is mandatory to evaluate risk assessment for human consumption as well as understanding aquatic contamination levels and bioaccumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albalat A, Potrykus J, Pempkowiak J et al. (2002) Assessment of organotin pollution along the Polish coast (Baltic Sea) by using mussels and fish as sentinel organisms. Chemosphere 47:165–171

    Article  CAS  Google Scholar 

  • Arai T, Goto A, Miyazaki N (2003a) Use of otolith microchemistry to estimate the migratory history of the threespine stickleback, Gasterosteus aculeatus. J Mar Biol Assoc UK 83:223–230

    CAS  Google Scholar 

  • Arai T, Goto A, Miyazaki N (2003b) Migratory history of the threespine stickleback Gasterosteus aculeatus. Ichthyol Res 50:9–14

    Article  Google Scholar 

  • Bayliff WH (1994) A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. FAO Fish. Tech. Pap. 336/2:44–295

    Google Scholar 

  • Borghi V, Porte C (2002) Organotin pollution in deep-sea fish from the northwestern Mediterranean. Environ Sci Technol 36:4224–4228

    Article  CAS  Google Scholar 

  • Collette BB (1999) Mackerels, molecules, and morphology. Soc Fr Ichthyol 25:149–164

    Google Scholar 

  • Collette BB, Nauen CE (1983) FAO Fisheries Synopsis No. 125. FAO species catalogue Vol. 2 scobrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • De Mora SJ, Fowler SW, Cassi R et al. (2003) Assessment of organotin contamination in marine sediments and biota from the Gulf and adjacent region. Mar Pollut Bull 46:401–409

    Article  Google Scholar 

  • Dong CD, Chen CW, Liu LL (2004) Seasonal variation in the composition and concentration of butyltin compounds in marine fish of Taiwan. Environ Pollut 131:509–514

    Article  CAS  Google Scholar 

  • Falandysz J, Brzostowski A, Szpunar J et al. (2002) Butyltins in sediments and three-spined stickleback (Gasterosteus aculleatus) from the marinas of the Gulf of Gdansk, Baltic Sea. J Environ Sci Health A 37:353–363

    Article  CAS  Google Scholar 

  • Gjosaeter J, Kawaguchi K (1980) A review of the worlds resources of mesopelagic fish. FAO Fish Tech Pap 193:1–151

    Google Scholar 

  • Guruge KS, Tanabe S, Iwata H et al. (1996) Distribution, biomagnification, and elimination of butyltin compound residues in common cormorants (Phalacrocorax carbo) from Lake Biwa, Japan. Arch Environ Contam Toxicol 31:210–217

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Yamamoto Y et al. (1998) Organotin compounds in water, sediment, and biological samples from the Port of Osaka, Japan. Arch Environ Contam Toxicol 35:558–564

    Article  CAS  Google Scholar 

  • Harino H, Fukusjima M, Kawai S (2000) Accumulation of butyltin and phenyltin compounds in various fish species. Arch Environ Contam Toxicol 39:13–16

    Article  CAS  Google Scholar 

  • Harino H, O'hara SCM, Burt GR et al. (2002) Butyltin and phenyltin compounds in eels (Anguilla anguilla). J Mar Biol Assoc UK 82:893–901

    Article  CAS  Google Scholar 

  • Hassani LH, Frenich AG, Benajiba MH et al. (2006) Assessment of butyltin and phenyltin pollution in the sea mullet, Mugil cephalus, along the Moroccan and Spanish coasts (Mediterranean Sea). Arch Environ Contam Toxicol 51:608–614

    Article  CAS  Google Scholar 

  • Hung TC, Lee T Y, Liao TF (1998) Determination of butyltins and phenyltins in oysters and fishes from Taiwan coastal waters. Environ Pollut 102:197–203

    Article  CAS  Google Scholar 

  • Kannan K, Tanabe S, Iwata H et al. (1995) Butyltins in muscle and liver of fish collected from certain Asian and Oceanian countries. Environ Pollut 90:279–290

    Article  CAS  Google Scholar 

  • Kannan K, Corsolini S, Focardi S et al. (1996) Accumulation pattern of butyltin compounds in dolphin, tuna, and shark collected from Italian coastal waters. Arch Environ Contam Toxicol 31:19–23

    Article  CAS  Google Scholar 

  • Kannan K, Senthilkumar K, Loganathan BG et al. (1997) Elevated accumulation of tributyltin and its breakdown products in bottlenose dolphins (Tursiops truncatus) found stranded along the US Atlantic and Gulf coasts. Environ Sci Technol 31:296–301

    Article  CAS  Google Scholar 

  • Krone CA, Stein JE (1999) Species dependent biotransformation and tissue distribution of tributyltin in two marine teleosts. Aquat Toxicol 45:209–222

    Article  CAS  Google Scholar 

  • Krone CA, Stein JE, Varanasi U (1996) Butyltin contamination of sediments and benthic fish from the East, Gulf and Pacific coasts of the United States. Environ Monit Assess 40:75–89

    Article  CAS  Google Scholar 

  • Lee CC, Wang T, Hsieh CY et al. (2005) Organotin contamination in fishes with different living patterns and its implications for human health risk in Taiwan. Environ Pollut 137:198–208

    Article  CAS  Google Scholar 

  • Lee RF (1991) Metabolism of tributyltin by marine animals and possible linkages to effects Mar Environ Res 32:29–35

    Article  CAS  Google Scholar 

  • Morcillo Y, Borghi V, Porte C (1997) Survey of organotin compounds in the western Mediterranean using molluscs and fish as sentinel organisms. Arch Environ Contam Toxicol 32:198–203

    Article  CAS  Google Scholar 

  • Ohji M, Harino H, Arai T (2006) Differences in organotin accumulation among ecological migratory types of the Japanese eel Anguilla japonica. Estuar Coast Shelf Sci 69:270–290

    Article  Google Scholar 

  • Ohji M, Arai T, Miyazaki N (2007) Comparison of organotin accumulation in the masu salmon Oncorhynchus masouaccompanying migratory histories. Estuar Coast Shelf Sci 72:721–731

    Article  CAS  Google Scholar 

  • Rudel H, Muller J, Steinhanses J et al. (2007) Retrospective monitoring of organotin compounds in freshwater fish from 1988 to 2003:results from the German environmental specimen bank. Chemosphere 66:1884–1894

    Article  Google Scholar 

  • Stäb JA, Traas TP, Stroomberg G et al. (1996) Determination of organotin compounds in the foodweb of a shallow freshwater lake in the Netherlands. Arch Environ Contam Toxicol 31:319–328

    Article  Google Scholar 

  • Steffen D, Wunsch H, Kämmereit M et al. (2003) Flächendeckendes Biomonitoring zur Triphenylzinnproblematik, Niedersächsisches Landesamt für Ökologie, Hildesheim, Germany

    Google Scholar 

  • Takahashi S, Tanabe S, Kubodera T (1997) Butyltin residues in deep sea organisms collected from Surnga Bay, Japan. Environ Sci Technol 31:3103–3109

    Article  CAS  Google Scholar 

  • Takahashi S, Tanabe S, Takeuchi I et al. (1999) Distribution and specific bioaccumulation of butyltin compounds in a marine ecosystem. Arch Environ Contam Toxicol 37:50–61

    Article  CAS  Google Scholar 

  • Takahashi S, Tanabe S, Kawaguchi K (2000) Organochlorine and butyltin residues in mesopelagic myctophid fishes from the western North Pacific. Environ Sci Technol 34:5129–5136

    Article  CAS  Google Scholar 

  • Tesch FW (1977) The eel. Biology and management of anguillid eels, Chapman & Hall, London

    Google Scholar 

  • Tsukamoto K, Arai T (2001) Facultative catadromy of the eel, Anguilla japonica, between freshwater and seawater habitats. Mar Ecol Prog Ser 220:365–376

    Article  Google Scholar 

  • Ueno D, Inoue S, Takahashi S et al. (2004) Global pollution monitoring of butyltin compounds using skipjack tuna as a bioindicator. Environ Pollut 127:1–12

    Article  CAS  Google Scholar 

  • Wootton RJ (1984) A functional biology of sticklebacks, Croom Helm, London

    Google Scholar 

  • Yamada H, Takayanagi K, Tateishi M et al. (1997) Organotin compounds and polychlorinated biphenyls of livers in squid collected from coastal waters and open oceans. Environ Pollut 96:217–226

    Article  CAS  Google Scholar 

  • Yamanaka H (1982) Fishery biology of the bluefin tuna resource in the Pacific Ocean, 140 p. Japan Fisheries Resources Conservation Association, Tokyo, Japan (In Japanese)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Arai, T. (2009). Fish. In: Arai, T., Harino, H., Ohji, M., Langston, W.J. (eds) Ecotoxicology of Antifouling Biocides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-85709-9_17

Download citation

Publish with us

Policies and ethics