Skip to main content

Spectroscopy Methods for Low-Dimensional Systems

  • Conference paper
Materials and Measurements in Molecular Electronics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 81))

  • 106 Accesses

Abstract

Continuous progress in Solid State Physics and Materials Science has developed through a permanent interplay between theory and experiments in which spectroscopy is taking a major part. Absorption and Reflectivity spectroscopy is a key method for determining band gaps, necessary for establishing of electronic band structures and phonon dispersion relations which are the basic characteristics of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.F. Wallis and M. Balkanski, Many Body Aspects of Solid State Spectroscopy, North-Holland (Amsterdam), 1986.

    Google Scholar 

  2. M. Dresselhaus, G. Dresselhaus, R. Saito and P C Ekland, C60-Related Balls and Fibers, in Elementary Excitations in Solids A Special Volume in Honor of Professor Minko Balkanski, edited by J.L. Birman, C. Sébenne and R.F. Wallis, North-Holland (Amsterdam), 1992.

    Google Scholar 

  3. Marvin L. Cohen, Density Functional Theory and Pseudopotentials: a Panacea for Calculating Properties of Materials, Int. J. of Quantum Chem. (to be published).

    Google Scholar 

  4. S. lijima, Nature 354, 1991, pp. 56.

    Article  ADS  Google Scholar 

  5. C. Julien and M Balkanski, Is the Rigid Band Model Applicable in Lithium Intercalation Compounds, Solid State Ionics III, Materials Research Society Symposium Proceedings, Vol. 293, 1992, pp. 27–37.

    Article  Google Scholar 

  6. Y. Miyamoto, A. Rubio, M.L. Cohen and S.G. Lonie, Chiral Tubules of Hexagonal BC2N, Phys. Rev. B50, 1949, pp. 4976.

    Google Scholar 

  7. M. Balkanski, Energy Transport in Semiconductors, J. Phys. Chem. Solids, Vol. 8, 1959, pp. 179–181.

    Article  ADS  Google Scholar 

  8. J.J. Hopfield, Aspects of Polaritons, Proc. Int. Conf. Phys. of Semicond., Kyoto. 1966: J. Phys. Soc. Japan 21, 1966, pp. 77–88.

    Google Scholar 

  9. E. Burstein and C. Weisbuch, Confined Electrons and Photons, Plenum Press, New-York, 1995.

    Book  Google Scholar 

  10. H. Yohoyama, Physics and Device Applications of Optical Microcavities, Source 256, 1992, pp. 66.

    Google Scholar 

  11. E. Yablonovitch, Photonic Bandgap Structures, J. Opt. Soc. Am. B 10, 1993, pp. 283–297.

    ADS  Google Scholar 

  12. M. Balkanski, K.P. Jain, R. Beserman and M. Jouanne, Theory of Interference Distortion of Raman Scattering Line Shapes in Semiconductors, Phys. Rev., Vol. B 12 (1975), pp. 4328–4337.

    Google Scholar 

  13. S. Nakashima, Raman Intensity Profiles and Crystal Structures, in Elementary Excitations in Solids, Special Volume in Honor Professor Minko Balkanski, edited by J.L. Birman, C. Sébenne and R.F. Wallis, North-Holland (Amsterdam), 1992, pp. 167–195.

    Google Scholar 

  14. C. Julien, I. Samaras, O. Gorochov and M. Ghorayeb, Optical and Electrical-Transport Studies on Lithium-Intercalated TiS2, Phys. Rev. Vol. 45 (1992), pp. 13390–13395.

    Article  Google Scholar 

  15. M. Balkanski, P. Gomes da Costa and R.F. Wallis, Electron Energy Bands and Lattice Dynamics of Pure and Lithium Intercalated InSe, Phys. Status Solidi (to be published).

    Google Scholar 

  16. Ping Zhou, K.A. Wang, A.M. Rao, P.C. Ekland, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. Vol. B 45, 1992, pp. 10838–10840.

    Article  Google Scholar 

  17. M.S. Dresselhaus, G. Dresselhaus and R. Saito, Phys. Rev., Vol. B 45, 1992, pp. 6234–6242.

    Article  ADS  Google Scholar 

  18. R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus (unpublished).

    Google Scholar 

  19. P.A.M. Dirac, Proc. Cambridge Philos. Soc., Vol. 26, 1930, pp. 376.

    Article  ADS  MATH  Google Scholar 

  20. E. Fermi, Nuovo Cimento, Vol. 11, 1934, pp. 157.

    Article  MATH  Google Scholar 

  21. M.L. Cohen and J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer-Verlag, Berlin, 1988.

    Book  Google Scholar 

  22. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett., Vol. 68, 1992, pp. 1579.

    Article  ADS  Google Scholar 

  23. K. Kunc and R. Zeyher, Europhys. Lett. 7, 1988, pp. 611.

    Article  ADS  Google Scholar 

  24. Y. Miyamoto, A. Rubio, X. Blase, M.L. Cohen and S.G. Lonie, Ionic Cohesion and Electronic Doping of thin Carbon Tubules with Alkali Atoms, Phys. Rev. Lett., Vol. 74, 1995, pp. 2993.

    Article  ADS  Google Scholar 

  25. L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Ock, L. Stockman, C. Van Hacsendonck and Y. Bruynsaraede, Quantum Transport in Multiwalled Carbon Nanotube, Phys. Rev. Lett. 76, 1996, pp. 479–482.

    Article  ADS  Google Scholar 

  26. D. El-Khatouri, A. Khater, M. Balkanski, C Julien and J.P. Guesdon, Two-Dimensional Conductivity in the Layered Semiconductor InSe at Low Temperatures Owin to Weak Localisation, J. Appl. Phys. 66, 1989, pp. 2049–2051.

    Article  ADS  Google Scholar 

  27. D. El-Khatouri, A. Khater, M. Balkanski and J. Tuchendler, Two-Dimensional Quantum Corrections to the Magnetoconductance of InSe at Low Temperatures Owing to Weak Localization, J. Appl. Phys. 6, 1989, pp. 5409–5411

    Article  Google Scholar 

  28. L. Chico, V.H. Grespi, L.X. Benedict, S.G. Lonie and M.L. Cohen, Pure carbon nanoscale devices: nanotube heterojunctions (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this paper

Cite this paper

Balkanski, M. (1996). Spectroscopy Methods for Low-Dimensional Systems. In: Kajimura, K., Kuroda, Si. (eds) Materials and Measurements in Molecular Electronics. Springer Proceedings in Physics, vol 81. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68470-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68470-1_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68472-5

  • Online ISBN: 978-4-431-68470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics