Skip to main content

The Role of Microtubules in Root Hair Growth and Cellulose Microfibril Deposition

  • Chapter
Root Hairs

Abstract

Cortical microtubules (CMT) were first observed in plant cells (Ledbetter and Porter 1963) by transmission electron microscopy. In intercalary growing cells, CMT have always been found oriented with a right angle to the elongation axis of the cell (reviewed in Cyr 1994). Moreover, if CMT are depolymerized by addition of pharmalogical agents, cells expand isotropically (colchicine: Green 1962; dinitroaniline herbicides: Upadhyaya and Noodén 1977; Baskin et al. 1994). Stabilization of CMT by taxol also leads to more isotropic growth (Baskin et al. 1994). Furthermore, growth regulators affect the orientation of the CMT (e.g., van Spronsen et al. 1995). Most researchers agree that the orientation of the CMT determines the direction of cell expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakhuizen R (1988) The plant cytoskeleton in the Rhizobium-Legume symbiosis. PhD thesis Rijksuniversiteit Leiden, The Netherlands

    Google Scholar 

  • Baluska F, Parker JS and Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea Mays L.). J Cell Sci 103: 191–200

    Google Scholar 

  • Baskin TI, Wilson JE, Cork A and Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol 35: 935–942

    PubMed  CAS  Google Scholar 

  • Bibikova TN, Blancaflor EB and Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17: 657–665

    Article  PubMed  CAS  Google Scholar 

  • Bokros CL, Hugdahl JD, Kim HH, Hanesworth VR, van Heerden A, Browning KS and Morejohn LC (1995) Function of the p86 subunit of eukaryotic initiation factor (iso)4F as a microtubule-associated protein in plant cells. Proc Nat Acad Sci USA 92: 7120–7124

    Article  PubMed  CAS  Google Scholar 

  • Bonnett HT Jr and Newcomb EH (1965) Polyribosomes and cisternal accumulations in root cells of radish. J Cell Biol 27: 423–32

    Article  PubMed  Google Scholar 

  • Bruno KS, Tinsley JH, Minkle PF and Plamann M (1996) Genetic interactions among cytoplasmic dynein, dynactin, and nuclear distribution mutants of Neurospora crassa. Proc Nat Acad Sci USA 93: 4775–4780

    Article  PubMed  CAS  Google Scholar 

  • Chang Jie J, and Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J Cell Sci 105: 891–901

    PubMed  Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10: 153–80

    Article  PubMed  CAS  Google Scholar 

  • Doonan JH, Jenkins GI, Cove DJ and Lloyd CW (1986) Microtubules connect the migrating nucleus to the prospective division site during branch formation in the moss Physcomitrella patens. Eur J Cell Bio! 41: 157–164

    Google Scholar 

  • Durso NA, Leslie, JD and Cyr RI (1996) In situ immunocytochemical evidence that a homolog of protein translation elongation factor EF-1 alpha is associated with microtubules in carrot cells. Protoplasma 190: 141–150

    Article  CAS  Google Scholar 

  • Emons AMC (1982) Microtubules do not control microfibril orientation in a helicoidal cell wall. Protoplasma 133: 85–87

    Article  Google Scholar 

  • Emons AMC (1987) The cytoskeleton and secretory vesicles in root hairs of Equisetum and Limnobium and cytoplasmic streaming in root hairs of Equisetum. Annals of botany 60: 625–632

    Google Scholar 

  • Emons AMC (1988) A comparison of methods for visualization of the cell wall microfibrils. Acta Bot Neerl 37: 31–38

    Google Scholar 

  • Emons AMC (1989) Helicoidal microfibril deposition in a tip-growing cell and microtubule alignment during rip morphogenesis: a dry-cleaving and freeze-substitution study. Can. J Bot 67: 2401–2408

    Article  Google Scholar 

  • Emons AMC and Derksen JHM (1986) Microfibrils, microtubules and microfilaments of the trichoblast of Equisetum hyemale. Acta Bot Neerl 35: 311–320

    Google Scholar 

  • Emons AMC, Derksen J and Sassen MMA (1992) Do microtubules orient plant cell wall microfibrils? Phys Plantarum 84: 486–493

    Article  CAS  Google Scholar 

  • Emons AMC and Wolters-Arts AMC (1983) Microtubules and microfibrils in the cell wall of root hairs of Equisetum hyemale. Protoplasma 117: 68–81

    Article  Google Scholar 

  • Emons AMC, Wolters-Arts AMC, Traas JA and Derksen J (1990) The effect of colchicine on microtubules and microfibrils in root hairs. Acta Bot Neerl 39: 10–27

    Google Scholar 

  • Emons AMC and van Maaren N (1987) Helicoidal cell wall texture in root hairs. Planta 170: 145–151

    Article  Google Scholar 

  • Fisher DD and Cyr RJ (1998) Extending the microtubule/microfibril paradigm. Cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Galway ME, Heckman JW Jr, Schiefelbein JW (1997) Growth and ultrasstructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201: 209–218

    Article  PubMed  CAS  Google Scholar 

  • Gertel ET and Green PB (1977) Cell growth pattern and wall microfibrillar arrangement. Plant Physiol 60: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH Jr and Staehelin LA (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (Ed) The cytoskeletal basis of plant growth and form. Academic Press, San Diego, CA. pp 303–322

    Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138: 1404–1405

    Article  PubMed  CAS  Google Scholar 

  • Green PB, Erickson RO and Richmond PA (1970) On the physical basis of cell morphogenesis. Ann. NY Acad Sci 175: 712–731

    Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Bio148: 445–449

    Google Scholar 

  • Hepler PK and Fosket DE (1971) The role of microtubules in vessel member differentiation in Coleus. Protoplasma 72: 213–236

    Article  Google Scholar 

  • Inoue S, Turgeon BG, Yoder OC and Aist JR (1998) Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration. J Cell Sci 111: 1555–1566

    PubMed  CAS  Google Scholar 

  • Joos U, van Aken, J and Kristen U (1994) Microtubules are involved in maintaining the cellular polarity in pollen tubes of Nicotiana sylvestris. Protoplasma 179: 5–15

    Article  Google Scholar 

  • Ledbetter MC and Porter KR (1963) A ‘microtubule’ in plant fine structure. J Cell Biol 19: 239–250

    Article  PubMed  CAS  Google Scholar 

  • Lloyd CW (1983) Helical microtubular arrays in onion root hairs. Nature 305: 311–313

    Article  PubMed  CAS  Google Scholar 

  • Lloyd CW, Pearce KJ, Rawlins DJ, Ridge RW and Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. Cell Motility and Cytoskeleton 8: 27–36.

    Article  Google Scholar 

  • Lloyd CW and Wells B (1985) Microtubules are at the tips of root hairs and form helical patterns corresponding to inner wall fibrils. J Cell Sci 75: 225–238

    PubMed  CAS  Google Scholar 

  • Meekes HTHM (1985) Ultrastructure, differentiation and cell wall texture of trichoblasts and root hairs of Ceratopteris thalictroedes (L.) Brongn. (Parkeriaceae). Aquatic Botany 21: 347–362

    Article  Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T and Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17: 141–154

    CAS  Google Scholar 

  • Mizuno K (1993) Microtubule-nucleation sites on nuclei of higher plant cells. Protoplasma 173: 77–85

    Article  Google Scholar 

  • Newcomb EH and Bonnett HT (1965) Cytoplasmic microtubule and cell wall microfibril orientation in root hairs of radish. J Cell Biol 27: 575–589

    Article  PubMed  CAS  Google Scholar 

  • Pluymaekers, HJ (1982) A helicoidal cell wall texture in root hairs of Limnobium stoloniferum. Protoplasma 112: 107–116

    Article  Google Scholar 

  • Plamann M, Minke PF, Tinsley, JH and Bruno KS (1994) Cytoplasmic dynein and actin-related protein Arpl are required for normal nuclear distribution in filamentous fungi. J Cell Biol 127: 139–149

    Article  PubMed  CAS  Google Scholar 

  • Reinsch S and Gönczy P (1998) Mechanisms of nuclear positioning. J Cell Sci 111: 2283–2295

    PubMed  CAS  Google Scholar 

  • Ridge RW (1992) A model of legume root hair growth and Rhizobium infection. Symbiosis 14: 359–373

    Google Scholar 

  • Robinson DG and Quader H (1982) The microtubule-microfibril syndrome. In: Lloyd CW (Ed) The cytoskeletal basis of plant growth and form. Academic Press, San Diego, CA. pp 109–126

    Google Scholar 

  • Rutten T, Chan J, Lloyd CW (1997) A 60-kDa plant microtubule-associated protein promotes the growth and stabilization of neurotubules in vitro. Proc Natl Acad Sci USA 94: 4469–4474

    Article  PubMed  CAS  Google Scholar 

  • Schmid VHR and Meindl U (1992) Microtubules do not control orientation of secondary cell wall microfibril deposition in Micrasterias. Protoplasma 169: 148–154

    Article  Google Scholar 

  • Schnepf E, Röderer G and Herth W (1975) The formation of fibrils in the lorica of Poteriochromonas stipitata: tip growth, kinetics, site, orientation. Planta 125: 45–62

    Article  Google Scholar 

  • Seagull RW and Heath IB (1980) The organization of cortical microtubule arrays in the radish root hair. Protoplasma 103: 205–229

    Article  Google Scholar 

  • Shaw SL, Yeh E, Maddox P, Salmon ED and Bloom K (1997) Astral microtubule dynamics in yeast: a microtubule-base searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol 139: 985–994

    Article  PubMed  CAS  Google Scholar 

  • Stoppin V, Lambert A-M and Vantard M (1996) Plant microtubule-associated proteins ( MAPs) affect microtubule nucleation and growth at plant nuclei and mammalian centrosomes. Eur J Cell Biol 69: 11–23

    Google Scholar 

  • Stoppin V, Vantard M, Schmit A-C, Lambert A-M (1994) Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity. Plant Cell 6: 1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E and Shimmen T (1997) Microtubules regulate the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199: 83–92

    Article  CAS  Google Scholar 

  • Tracs JA, Braat P, Emons AMC, Meekes H and Derksen J (1985) Microtubules in root hairs. J Cell Sci 76: 303–320

    Google Scholar 

  • Upadhyaya MK and Noodén LD (1977) Mode of dinitroaniline herbicide action I. Analysis of the colchicine-like effects of dinitroaniline herbicides. Plant Cell Physiol 18: 1319–1330

    CAS  Google Scholar 

  • van Amstel ANM and Derksen J (1993) The complex helical texture of the secondary cell wall of Urtica dioica root hairs is not controlled by microtubules: a quantitative analysis. Acta Bot. Neerl. 42: 141–151

    Google Scholar 

  • van Spronsen PC, van Brussel AA and Kijne JW (1995) Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa ssp. nigra. Eur J Cell Biol 68: 463–469

    PubMed  Google Scholar 

  • Xiang X, Beckwith SM and Morris NR (1994) Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Nat Acad Sci USA 91: 2100–2104

    Article  PubMed  CAS  Google Scholar 

  • Xiang X, Roghi C and Morris NR (1995) Characterization and localization of the cytoplasmic dynein heavy chain in Aspergillus nidulans. Proc Nat Acad Sci USA 92: 9890–9894

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Ketelaar, T., Emons, A.M.C. (2000). The Role of Microtubules in Root Hair Growth and Cellulose Microfibril Deposition. In: Ridge, R.W., Emons, A.M.C. (eds) Root Hairs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68370-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68370-4_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68372-8

  • Online ISBN: 978-4-431-68370-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics