Skip to main content

Shock Compression Studies on Ceramic Materials

  • Chapter
Shock Waves in Materials Science

Abstract

Although shock-wave propagation in solid is a momentary phenomenon whose time interval is within several microseconds, such waves can generate ultra-high pressure conditions, to inducing changes in crystal or electric structure of condensed matter, and even nuclear reaction. The high-pressure equation of state, phase transition, dynamic mechanical behavior, etc. of solid matter are explored through by the measurement of shock-wave properties (Hugoniot) parameters (shock velocity, particle velocity, stress, etc.). The Hugoniot parameters of many materials, including elementary and compound materials, have been measured by the discreet-type methods (pin-contactor methods, flash gap method etc.,) and the continuous-type methods (condenser method, electromagnetic-gauge method, quartzgauge method, manganin-gauge method, inclined-mirror method, laser interferometer method (VISAR), etc.) over the past 40 years by scientists chiefly in the USA and the USSR. In particular, many elementary metals and oxide minerals have been widely investigated in relation to the high-pressure physics of matter and the earth and planetary science [1–6]. However, in these early studies, the measurement methods were, in many cases, discreet type, and the specimen qualities were poor compared with more recent studies. For ceramics, the reported number of shock-compression research studies has not been many, and the ceramic specimens used in the early studies were, in many cases, sintered ceramics with large porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LASL Shock Hugoniot Data (1980) edited by Marsh SP, University of California, Berkeley.

    Google Scholar 

  2. Compendium of Shock Wave Data 1 (1966) ed. by van Thiel M, University of California, Livermore, California, (NTIS).

    Google Scholar 

  3. McQueen RG, Marsh SP, Taylor JW, Fritz JN, Carter WJ (1970) High-Velocity Impact Phenomena: ed. by Kinslow R, Academic Press, New York, 244.

    Google Scholar 

  4. Al’tshuler LV (1965) Sov. Phys. Uspekhi. 8: 52.

    Article  ADS  Google Scholar 

  5. Ahrens TJ, Gregson VG Jr (1964) J. Geophys. Res. 69: 4839.

    Article  ADS  Google Scholar 

  6. McQueen RG, Marsh SP, Fritz JN (1967) J. Geophys. Res. 72: 4999.

    Article  ADS  Google Scholar 

  7. Abou-Seyed AS, Clifton RJ, Herman L (1976) Exp. Mech. 6: 121.

    Google Scholar 

  8. Gupta YM (1976) Appl. Phys. Lett. 29: 694.

    Article  ADS  Google Scholar 

  9. Chhabildas LC, Swegle JW (1980) J. Appl. Phys. 51: 4799.

    Article  ADS  Google Scholar 

  10. Mashimo T, Ozaki S, Nagayama K (1984) Rev. Sci. Instr. 55: 226.

    Article  ADS  Google Scholar 

  11. Ahrens TJ, Gust WH, Royce EB (1968) J. Appl. Phys. 39: 4610.

    Article  ADS  Google Scholar 

  12. Goto T, Syono Y (1980) SCI. REP. RITU. A-Vol 29: 32.

    Google Scholar 

  13. Mashimo T, Nakamura A, Hamada Y (1992) Proc. 20th Internai. Congress on High Speed Photography and Photonics (to be publiushed).

    Google Scholar 

  14. unpublished data.

    Google Scholar 

  15. Keough DD, Wong TY (1970) J. Appl. Phys. 41: 3608.

    Article  Google Scholar 

  16. Gupta YM (1983) J. Appl. phys. 54: 6265

    ADS  Google Scholar 

  17. Vantine HC, Erickson LM, Janzen JA (1980) J. Appl. Phys. 51: 1957.

    Article  ADS  Google Scholar 

  18. Chartagnac PF (1982) J. Appl. Phys. 53: 948.

    Article  ADS  Google Scholar 

  19. Mashimo T, Hanaoka Y, Nagayama K (1988) J. Appl. Phys. 63: 327.

    Article  ADS  Google Scholar 

  20. unpublished data.

    Google Scholar 

  21. Dremin AN, and Adadurov GA (1964) Sov. Phys. Solid State 6: 1397.

    Google Scholar 

  22. Mashimo T, Nagayama K (1986) Jpn. J. Appl. Phys. 25, Suppl. 25–1: 103.

    Google Scholar 

  23. Gupta YM, Keough DD, Walter DF, Dao KC, Henly D, Urtiew A (1980) Rev. Sci. Instr. 51:183.

    Article  ADS  Google Scholar 

  24. Mashimo T (1988) Shock Wave in Condensed Matter 1987: ed. Schmidt SC, Holmes NC, North-Holland, 285.

    Google Scholar 

  25. McQueen RG, Marsh SP (1960) in Handbook of Physical Constants: ed. Clerk SP Jr, Geophysical Society of America, New York, Chap. 7.

    Google Scholar 

  26. Pavlovskii MN (1971) Sov. Phys. Solid State 12: 1736.

    Google Scholar 

  27. Graham RA, Brooks WP (1971) Phys. Chem. Solids 32: 2311.

    Article  ADS  Google Scholar 

  28. Gust WH, Royce EB (1971) J. Appl. Phys. 42: 276.

    Article  ADS  Google Scholar 

  29. Sato T, Akimoto S (1979) J. Appl. Phys. 50: 5285.

    Article  ADS  Google Scholar 

  30. Rosenberg Z, Yaziv D, Yeshurun Y, Bless SJ (1987) J. Appl Phys. 62: 1120.

    Article  ADS  Google Scholar 

  31. Gieske JH, Barsch GR (1968) Phys. Stat. Sol 29: 121.

    Article  ADS  Google Scholar 

  32. Mashimo T, Nagayama K, Sawaoka A (1983) Phys. Chem. Minerals 9: 237.

    Article  ADS  Google Scholar 

  33. Wackerle J (1962) J. Appl Phys. 33: 922.

    Article  ADS  Google Scholar 

  34. Mashimo T, Kodama M, Nagayama K (1988) Advans in Ceramics 24: 329.

    Google Scholar 

  35. Mashimo T, Kodama M, Kusaba K, Fukuoka K, Syono Y (1990) Shock Compression of Condensed Matter 1989: edited by Schmidt SC, Johnson JN, Davison LW, North-Holland, 469.

    Google Scholar 

  36. Mashimo T, Kodama M, Kusaba K, Fukuokja K, Syono Y (1992) Proc. 18th Internai. Symp. Shock Waves: ed. Takayama K, Springer-Verlag, 441.

    Google Scholar 

  37. Syono Y, Goto T (1980) SCI. REP. RITU. A-Vol 29: 17.

    Google Scholar 

  38. Arashi H, Private Communication.

    Google Scholar 

  39. Garvie RC, Hannink RN, Pasoe RT (1975) Nature 256: 713.

    Article  Google Scholar 

  40. Mashimo T (1988) J. Appl. Phys. 63: 4141.

    Article  Google Scholar 

  41. Grady DE, Mashimo T (1992) J. Appl Phys. 71: 4868.

    Article  ADS  Google Scholar 

  42. Barker LM, Hollenbach RE (1972) J. Appl Phys. 43: 4669.

    Article  ADS  Google Scholar 

  43. Ohtaka O, Kume S, Ito E (1988) J. Am. Ceram. Soc. 71: C-448.

    Google Scholar 

  44. unpublished data

    Google Scholar 

  45. Nakamura A, Mashimo T, Nishida M, Matsuzaki S (1990) Proc. 1989 Nationat. Symp. Shock Wave Phenomena: 145

    Google Scholar 

  46. Ogata T, Kihara M, Nakamura K, Kobayashi K (1988) J. Ceram. Soci. Jpn. 96: 310.

    Article  Google Scholar 

  47. Kamijo E, Honda M, Higuchi M, Yamakawa H, Komura O (1983) Sumitomodenki 123: 139 (in Japanese).

    Google Scholar 

  48. Mashimo T, Nakamura A, Wakamori K, Miyake M (1990) J. Soc. Mat. Sci. 39: 1615 (in Japanese).

    Article  Google Scholar 

  49. unpublished data

    Google Scholar 

  50. Asay JR, Hicks DL, Holdridge DB (1975) J. Appl Phys. 46: 4316.

    Article  ADS  Google Scholar 

  51. Stöffler D (1972) Fortschr. Mineral, 49: 50.

    Google Scholar 

  52. Ananin AV, Brevson ON, Dremin AN, Pershin SV, Tatsii VF (1974) Combustion Expros. Shock Waves 10: 426.

    Google Scholar 

  53. Muller WF, Hornemann U (1969) Earth. Planet. Sci. Lett. 7: 251.

    Article  ADS  Google Scholar 

  54. Reimold WU, Stoffler D (1978) Proc. Lunner. Planet. Sci. Conf 9th.: 2805.

    Google Scholar 

  55. Klein MJ (1965) Phil Mag. 12: 735.

    Article  ADS  Google Scholar 

  56. Bauer JF (1979) Proc. Lunar. Planet. Sci. Conf. 10th: 2573.

    Google Scholar 

  57. Mori H (1985) J. Jpn. Crys. Soc. 27: 179.

    Google Scholar 

  58. Brannon PJ, Konrad CH, Morris RW, Jones ED, Asay JR (1983) SAND82–2469.

    Google Scholar 

  59. Grady DE (1980) J Geophys J Res. 85: 913.

    Article  ADS  Google Scholar 

  60. Granz AJ (1988) Phys. Chem. Minerals, 16: 221.

    ADS  Google Scholar 

  61. Goto T, Syono Y (1985) J. Appl Phys. 58: 2548.

    Article  ADS  Google Scholar 

  62. Goto T, Sato T, Syono Y (1982) Jpn. J. Appl. Phys. 21: L369.

    Article  ADS  Google Scholar 

  63. Engelhardt W, Stoffler D (1968) Shock Metamorphism of Natural Minerals: edited by French B, Short N, Mono. Press. Baltimore, 159.

    Google Scholar 

  64. Jeanloz R, Ahrens TJ, Lally JS, Nord GL Jr, Christie JM, Heuer AH (1972) Science 197: 457.

    Article  ADS  Google Scholar 

  65. Bogdanov AG, Popov S AS, Rundenko VS (1971) Engl. Transl. Acad. Sci. USSR Proc. Chem. Sect. 201: 1011.

    Google Scholar 

  66. DeCarli PS, Milton DJ (1965) Science 147: 144.

    Article  ADS  Google Scholar 

  67. Davison L, Graham RA (1979) Phys. Rep. 55: 255.

    Article  ADS  Google Scholar 

  68. Mashimo T (1988) Shock Waves in Condensed Matter. 1987: edited by Schmidt SC, Holmes NC, North-Holland, 289.

    Google Scholar 

  69. Bless SJ, Brar NS, Rozenberg A (1988) Shock Waves in Condesed Matter 1987: edited by Schmidt SC, Holmes NC, North-Holland, 309.

    Google Scholar 

  70. Rosenberg Z, Brar NS, Bless SJ (1991) J. Appl. Phys. 70: 167.

    Article  ADS  Google Scholar 

  71. Sumitomo Electric Industri Co. Ltd., Private Communicatins.

    Google Scholar 

  72. Horiguchi A, Ueno F, Tsuge A (1986) Toshiba Review, 44: 616.

    Google Scholar 

  73. Asay JR, Chhabildas LC, Dandekar DP (1980) J. Appl. Phys. 51: 4774.

    Article  ADS  Google Scholar 

  74. Gust WH, Holt AC, Royce EB (1973) J. Appl. Phys. 44: 550

    Article  ADS  Google Scholar 

  75. Gust WH, Royce EB (1971) J. Appl. Phyts. 42: 276.

    Article  ADS  Google Scholar 

  76. Kipp ME, Grady DE (1990) Shock Compression of Condensed Matter 1989: edited by Schmidt SC, Johnson JN, Davison LW, North-Holland, 469.

    Google Scholar 

  77. Swegle JW, Grady DE (1985) J. Appl. Phys. 58: 692.

    Article  ADS  Google Scholar 

  78. Gilman JJ (1979) J. Appl. Phys. 50: 4059.

    Article  ADS  Google Scholar 

  79. Abou-Seyed AS, Clifton RJ, Herman L (1976) Exp. Mech. 6: 127

    Article  Google Scholar 

  80. Steinberg D, Cochran S, Guinan M (1980) J. Appl. Phys. 51: 1498.

    Article  ADS  Google Scholar 

  81. Barker LM, Scott DD (1984) Sandia Report SAND84–0432.

    Google Scholar 

  82. Sternberg J (1988) Appl. Phys. 65: 3417.

    Google Scholar 

  83. Addessio FL, Johnson TN (1990) J. Appl. Phys. 67: 3275.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Mashimo, T. (1993). Shock Compression Studies on Ceramic Materials. In: Sawaoka, A.B. (eds) Shock Waves in Materials Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68240-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68240-0_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68242-4

  • Online ISBN: 978-4-431-68240-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics