Skip to main content
  • 376 Accesses

Abstract

Coccoliths, the minute calcite scales formed by marine phytoplankton belonging to the Prymnesiophyceae, have been responsible for most of the carbonate sedimentation in the oceans over the past 100 million years. The aim of this brief review is to compare rates of coccolith accumulation on the sea floor over time, and outline the factors thought to influence their rate of sedimentation. Recognition of Croll-Milankovitch cycles in the sedimentary record, and data from the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) are beginning to provide detailed information on rates of sedimentation [1,2,3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gartner S (1977) Mar. Micropaleont. 2: 1–25.

    Article  Google Scholar 

  2. Fischer AG (1980) Spec. Publ. Geol. Soc. Am. 183: 93–104.

    Google Scholar 

  3. Hart MB (1987) Cret. Res. 8: 335–48.

    Article  Google Scholar 

  4. Tappan H (1980) The Paleobiology of Plant Protists. W. Freeman, San Francisco.

    Google Scholar 

  5. Van der Val P, de Jong L, Westbroek P, de Bruijn WC, Mulder Stapel AA (1983) J. UJltrastr. Res. 85:1139–58.

    Google Scholar 

  6. Westbroek P, van der Val P, van Emberg PR, de Vrind de Jong EW, de Bruijn WC (1986) In: Leadbeater BSC and Riding R (eds) Biomineralization in Lower Plants and Animals. Clarendon, Oxford, pp.189–203.

    Google Scholar 

  7. Bramlette MN (1958) Bull. Geol. Soc. Am. 69: 121–6.

    Article  Google Scholar 

  8. Holligan PM, Violler M, Harbour DS, Camus P, Champagne-Phillipe M (1983) Nature 304: 339–42.

    Article  CAS  Google Scholar 

  9. Honjo S (1976) Mar. Micropaleont. 1: 65–79.

    Article  Google Scholar 

  10. Berger WH (1976) In Riley JP, Chester R (eds) Chemical Oceanography vol. 5, Academic Press, New York, pp.266–388.

    Google Scholar 

  11. Raymont JEG (1980) Plankton and Productivity in the Oceans 1, Phytoplankton, Pergamon, Oxford.

    Google Scholar 

  12. Bonin DJ, Droop MR, Maestrini SY, Bonin MC (1986) Cryptogam. Algol. 7: 23–84.

    Google Scholar 

  13. Hattin DE (1975) J. Sed. Petrol. 45: 686–96.

    Google Scholar 

  14. Fischer A, Arthur M (1975) Spec. Pubis. Soc. econ. Paleont. Miner. Tulsa 25:19–50.

    Google Scholar 

  15. Dean WE, Gardner JV, Cepek P (1981) Mar. Geol. 39: 81–101.

    Article  CAS  Google Scholar 

  16. Schwarzacher W, Fischer AG (1982) In: Einsele G, Seilacher A (eds) Cyclic and Event Stratification. Springer, Berlin, pp.78–95.

    Google Scholar 

  17. Moore TC, Heath GR (1977) Earth Planet Sci. Lett. 37: 71–80.

    Article  Google Scholar 

  18. Davies TA, Worsley JR (1981) Spec. Pubis. Soc. Econ. Pet. Min. 32:169–79.

    Google Scholar 

  19. Holligan PM, Groom SB (1986) Proc. Roy. Soc. Edinb. 88B: 239–63.

    Google Scholar 

  20. Ross DA, Degens ET (1974) Mem. Am. Ass. Pet. Geol. 20:183–99.

    CAS  Google Scholar 

  21. Swift SA (1977) J. Geol. 85: 301–19.

    Article  Google Scholar 

  22. Mutterlose J, Harding I (1987) Abh. geol. Bundesanst 39:177–215.

    Google Scholar 

  23. Thomsen E (1989) Mar. Micropaleont. 15:123–52.

    Article  Google Scholar 

  24. Kennedy WJ (1987) Bull. Centres Rech. Expl. Prod. Elf Aquitaine 11: 91–126.

    Google Scholar 

  25. Häkansson E, Bromley RG, Perch-Nielsen K (1974) Spec. Pubis. Ass. Sedimentol. 1: 211–34.

    Google Scholar 

  26. Mackenzie FT, Agegian CR (1989) In: Crick RE, (ed) Origin, Evolution and modern Aspects of Biomineralization in Plants and Animals. Plenum, New York, pp.11–27.

    Google Scholar 

  27. Geitzenauer KR, Roche MR, McIntyre A (1976) Mem. Geol. Soc. Am. 145: 423–48.

    Google Scholar 

  28. Maxwell AE, von Herzen RP, Andrews JE, Boyce RE, Milow ED, Hsu KJ, Percival SF, Saito T. (1970) Init. Repts. DSDP 3: 441–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Pentecost, A. (1991). Coccolith Accumulation Rates: Cretaceous to Recent. In: Suga, S., Nakahara, H. (eds) Mechanisms and Phylogeny of Mineralization in Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68132-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68132-8_59

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68134-2

  • Online ISBN: 978-4-431-68132-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics