Skip to main content

Abstract

Hydrostatic pressure is a thermodynamic parameter that has recently received further consideration in various experimental fields. This parameter acts to decrease the total volume of a system at equilibrium in the case of liquids and solutions. The pressure effects in biological systems have been analyzed from two perspectives: (1) the physiology of deep-sea organisms and (2) biochemical reactions as a function of pressure. Although the physicochemical basis of pressure effects is well established (Heremans 1982;Balny et al. 1989), the pressure-induced phenomena that occur in living microorganisms have not been fully defined. Many bacteria adapted to deep-sea environments, called “barophiles,” have been reported; and these organisms can grow under high hydrostatic pressure conditions below 100 MPa, the pressure at the deepest point in the ocean. Gene expression under elevated hydrostatic pressure conditions has been explored extensively in barophilic bacteria in recent studies (Bartlett et al. 1995;Kato and Horikoshi 1995;Kato and Bartlett 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe F (1998) Hydrostatic pressure enhances vital staining with carboxyfluorescein or carboxydichlorofluorescein in Saccharomyces cerevisiae: efficient detection of labeled yeasts by flow cytometry. Appl Environ Microbiol 64:1139–1142

    CAS  Google Scholar 

  • Abe F, Horikoshi K (1995a) Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae. FEMS Microbiol Lett 130:307–312

    Article  CAS  Google Scholar 

  • Abe F, Horikoshi K (1995b) Effect of hydrostatic pressure on the yeast vacuole. In: Trzeciakowski WA (ed) High pressure science and technology. World Scientific Publishing, Singapore, pp 875–877

    Google Scholar 

  • Abe F, Horikoshi K (1996) Vacuolar acidification under high hydrostatic pressure in Saccharomyces cerevisiae. High Press Biosci Biotechnol 13:53–58

    Article  CAS  Google Scholar 

  • Abe F, Horikoshi K (I997a) Vacuolar acidification in Saccharomyces cerevisiae induced by elevated hydrostatic pressure is transient and is mediated by vacuolar H*-ATPase. Extremophiles 1:89–93

    Article  Google Scholar 

  • Abe F, Horikoshi K (1997b) Yeast vacuoles may serve as proton sequestrants under high hydrostatic pressure. In: Heremans K (ed) High pressure research in the biosciences and biotechnology. Leuven University Press, Leuven, Belgium, pp 209–212

    Google Scholar 

  • Abe F, Horikoshi K (1998) Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro-(piezo-) physiology. Extremophiles 2:223–228

    Article  PubMed  CAS  Google Scholar 

  • Anraku Y, Hirata R, Wada Y, Ohya Y (1992a) Molecular genetics of the yeast vacuolar WATPase. J Exp Biol 172:67–81

    CAS  Google Scholar 

  • Anraku Y, Umemoto N, Hirata R, Ohya Y (1992b) Genetic and cell biological aspects of the yeast vacuolar W-ATPase. J Bioeng Biomem 24:395–405

    Article  CAS  Google Scholar 

  • Balny C, Masson P, Travers F (1989) Some recent aspects of the use of high pressure for protein investigations in solution. High Press Res 2:1–28

    Article  Google Scholar 

  • Bartlett DH, Kato C, Horikoshi K (1995) High pressure influences on gene and protein expression. Res Microbiol 146:697–706

    Article  PubMed  CAS  Google Scholar 

  • Bisson LF, Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Rodriguez RJ (1982) Construction and characterization of the chloramphenicolresistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements. Gene 20:305–316

    Article  PubMed  CAS  Google Scholar 

  • Davey H, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    PubMed  CAS  Google Scholar 

  • Debarbouille M, Shuman HA, Silhavy TJ, Schwartz M (1978) Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulation in Escherichia coli. J Mol Biol 124:359–371

    Article  PubMed  CAS  Google Scholar 

  • De Smedt H, Borghgraef R, Ceuterick F, Heremans K (1979) Pressure effects on lipid—protein interactions in (Na* + K*) ATPase. Biochim Biophys Acta 556:479–489

    Article  PubMed  CAS  Google Scholar 

  • Emr SD, Hedgpeth J, Clement JM, Silhavy T.1, Hofnung M (1980) Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature 285:82–85

    Article  PubMed  CAS  Google Scholar 

  • Eraso P, Gancedo C (1987) Activation of yeast plasma membrane ATPase by acidic pH during growth. FEBS Lett 224:187–192

    Article  PubMed  CAS  Google Scholar 

  • Eraso P, Portillo F (1994) Molecular mechanism of regulation of yeast plasma membrane H (+)-ATPase by glucose: interaction between domains and identification of new regulatory sites. J Biol Chem 269:10393–10399

    PubMed  CAS  Google Scholar 

  • Fujii S, Iwahashi H, Obuchi K, Fujii T, Komatsu Y (1996) Characterization of a barotolerant mutant of the yeast Saccharomyces cerevisiae: importance of trehalose content and membrane fluidity. FEMS Microbiol Lett 141:97–101

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Nakatomi Y, Shimada S (1992) Direct induction of tetraploids or homozygous diploids in the industrial yeast Saccharomyces cerevisiae by hydrostatic pressure. Curr Genet 22:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Haworth R, Lemire BD, Crandall D, Cragoe EJ Jr, Fiegel L (1991) Characterization of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1098:79–89

    Article  PubMed  CAS  Google Scholar 

  • Heremans K (1982) High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng 11:1–21

    Article  PubMed  CAS  Google Scholar 

  • Heremans K, Wuytack F (1980) Pressure effect on the Arrhenius discontinuity in Caz+-ATPase from sarcoplasmic reticulum: evidence for lipid involvement. FEBS Lett 117:161–163

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E, Kopperschlager G (1982) Phosphofructokinase from yeast. Methods Enzymol 90:49–60

    Article  PubMed  CAS  Google Scholar 

  • Hofnung M (1974) Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12. Genetics 76:169–184

    PubMed  CAS  Google Scholar 

  • Iwahashi H, Kaul SC, Obuchi K, Komatsu Y (1991) Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol Lett 80:325–328.

    Article  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997) Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett 416:1–5

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R, Bernhardt G, Lüdemann HD, Stetter KO (1988) Pressure-induced alteration in the protein pattern of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Appl Environ Microbio! 54:2375–2380

    CAS  Google Scholar 

  • Kakinuma Y, Ohsumi Y, Anraku Y (1981) Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 256:10859–10863

    PubMed  CAS  Google Scholar 

  • Kandler O (1992) The archaebacteria: biochemistry and biotechnology. Portland Press, London

    Google Scholar 

  • Kato C, Bartlett DH (1997) The molecular biology of barophilic bacteria. Extremophiles 1:111–116

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Horikoshi K (1995) Gene expression under hydrostatic pressure. High Press Biosci Biotechnol 13:59–66

    Article  Google Scholar 

  • Kato C, Sato T, Smorawinska M, Horikoshi K (1994) High pressure conditions stimulate expression of chloramphenicol acetyltransferase regulated by the lac promoter in Escherichia coll. FEMS Microbiol Lett 122:91–96

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Smorawinska M, Sato T, Horikoshi K (1995) Cloning and expression in Escherichia coli of a pressure-regulated promoter region from a barophilic bacterium, strain DB6705. J Mar Biotechnol 2:125–129

    CAS  Google Scholar 

  • Kato C, Smorawinska M, Sato T, Horikoshi K (1996) Analysis of a pressure-regulated operon from the barophilic bacterium strain DB6705. Biosci Biotechnol Biochem 60:166–168

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Smorawinska M, Horikoshi K (1997) Comparison of the gene expression of aspartate ß-o-semialdehyde dehydrogenase at elevated hydrostatic pressure in deep-sea bacteria. J Biochem 121:717–723

    Article  PubMed  CAS  Google Scholar 

  • Kobori H, Sato M, TameikeA, Hamada K, Shimada S, Osumi M (1995) Ultrastructure effects of pressure stress to the nucleus in Saccharomyces cerevisiae: a study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol Lett 132:253–258

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE, Keller DM (1975) Enzymatic adaptation by bacteria under pressure. J Bacteriol 122:575–584

    PubMed  CAS  Google Scholar 

  • Morita RY (1957) Effect of hydrostatic pressure on succinic formic, and malic dehydrogenases in Escherichia coll. J Bacteriol 74:251–255.

    PubMed  CAS  Google Scholar 

  • Murakami TH, Zimmerman AM (1973) DNA synthesis in Tetrahymena: a pressure study. Cytobios 7:171–181

    CAS  Google Scholar 

  • Nakashima K, Horikoshi K, Mizuno T (1995) Effect of hydrostatic pressure on the synthesis of outer membrane proteins in Escherichia coll. Biosci Biotechnol Biochem 59:130–132

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Taiz L (1989) The evolution of H*-ATPases. Trends Biochem Sci 14:113–116

    Article  PubMed  CAS  Google Scholar 

  • Ogata R, Gilbert W (1979) DNA-binding site of lac repressor probed by dimethylsulfate methylation of the lac operator. J Mol Biol 132:709–728

    Article  PubMed  CAS  Google Scholar 

  • Preston RA, Murphy RF, Jones EW (1989) Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci USA 86:7027–7031

    Article  PubMed  CAS  Google Scholar 

  • Raibaud O, Roa M, Braun-Breton C, Schwartz M (1979) Structure of the malB region in Escherichia coli K12. I: genetic map of the malK-lamB operon. Mol Gen Genet 174:241–248

    Article  PubMed  CAS  Google Scholar 

  • Rosin MP, Zimmerman AM (1977) The induction of cytoplasmic petite mutants of Saccharomyces cerevisiae by hydrostatic pressure. J Cell Sci 26:373–385.

    PubMed  CAS  Google Scholar 

  • Royer CA (1990) Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy. Biochemistry 29:4959–4966

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Kato C, Horikoshi K (1995) Effect of high pressure on gene expression by lac and tac promoters in Escherichia coli. J Mar Biotechnol 3:89–92

    CAS  Google Scholar 

  • Sato T, Nakamura Y, Nakashima KK, Kato C, Horikoshi K (1996) High pressure represses expression of the malB operon in Escherichia coli. FEMS Microbiol Lett 135:111–116

    Article  PubMed  CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptideglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  • Schmid G, Ludemann HD, Jaenicke R (1975) High pressure effects on the activity of glycolytic enzymes. Biophys Chem 3:90–98

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1993) Structure, function and regulation of plasma membrane H(+)-ATPase. FEBS Lett 325:108–111

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membraneATPase is essential for growth and has homology with (Na* + K*), K’ and Caz+-ATPase. Nature 319:689–693

    Article  PubMed  CAS  Google Scholar 

  • Silhavy TJ, Brickman E, Bassford PJ Jr, Casadaban MJ, Shuman HA, Schwartz V, Guarente L, Schwartz M, Beckwith J (1979) Structure of the malB region in Escherichia coli K12. II: genetic map of the malE, F, G, operon. Mol Gen Genet 174:249–259

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1993) Frontiers of life. Frontiers, Gif sur Yvette, France

    Google Scholar 

  • Tamura K, Shimizu T, Kourai H (1992) Effects of ethanol on the growth and elongation of Escherichia coli under high pressures up to 40 MPa. FEMS Microbiol Lett 99:321–324

    Article  CAS  Google Scholar 

  • Tanida I, Hasegawa A, lids H, Ohya Y, Anraku Y (1995) Cooperation of calcineurin and vacuolar H*-ATPase in intracellular Ca’ homeostasis of yeast cells. J Biol Chem 270:10113–10119

    Article  PubMed  CAS  Google Scholar 

  • Troussellier M, Courties C, Vaguer A (1993) Recent applications of flow cytometry in aquatic microbial ecology. Biol Cell 78:111–121

    Article  PubMed  CAS  Google Scholar 

  • Umemoto N, Yoshihisa T, Hirata R, Anraku Y (1990) Roles of the VMA3 gene product, subunit c of the vacuolar membrane 1*-ATPase on vacuolar acidification and protein transport. J Biol Chem 265:18447–18453

    PubMed  CAS  Google Scholar 

  • Van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322

    PubMed  Google Scholar 

  • Vojtek AB, Fraenkel DG (1990) Phosphorylation of yeast hexokinases. Eur J Bioc hem 190:371–375

    Article  CAS  Google Scholar 

  • Zobel CE, Cobet AB (1963) Filament formation by Escherichia coli at increased hydrostatic pressures. J Bacteriol 87:710–719

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this chapter

Cite this chapter

Abe, F., Kato, C. (1999). Barophysiology (Piezophysiology). In: Horikoshi, K., Tsujii, K. (eds) Extremophiles in Deep-Sea Environments. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67925-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67925-7_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68008-6

  • Online ISBN: 978-4-431-67925-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics