Skip to main content

Biochemical and Physiological Importance of Plant Polyphenols

  • Conference paper
Food Factors for Cancer Prevention

Summary

We have recently been much interested in endogenous plant polyphenols that are expected to inhibit lipid peroxidation and protect against oxidative damage to membrane functioning. Based on the hypothesis that plant polyphenols must play an important role in protection from oxidative stress, we made an intensive search of novel types of antioxidative polyphenols from cereal, bean, and oil seeds. We then examined in detail the biological and pharmacological activity of lignan-type antioxidants isolated from sesame seeds. We also focused on theaflavins, the polyphenolic red pigments in black tea, and the beta-diketone (β-diketone) type of polyphenols, curcuminoids, which are present in spices. The biological activity and functions of these plant polyphenols are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McBrian DCH, Slater TF (eds) (1982) Free radicals, lipid peroxidation and cancer. Academic, New York

    Google Scholar 

  2. Osawa T, Namiki M, Kawakishi S (1989) Role of dietary antioxidants in protection against oxidative damage. In: Kroda Y, Shankel DM, Waters MD (eds) Antimutagenesis and anti-carcinogenesis mechnanisms, vol II. Plenum, New York, pp 139–153

    Google Scholar 

  3. Osawa T, Yoshida A, Kawakishi S, Yamashita K, Ochi H (1995) Protective role of dietary antioxidants in oxidative stress. In: Cutler RG, Packer L, Bertram J, Mori A (eds) Oxidative stress and aging. Birkhauser, Basel, pp 367–377

    Chapter  Google Scholar 

  4. Gardner HW, Selke E (1984) Volatiles from thermal decomposition of isomeric methyl (12s, 13s). Lipids 19:375–380

    Article  CAS  Google Scholar 

  5. Witz G (1989) Biological interaction of unsaturated aldehyde. Free Radical Biol Med 7:333–349

    Article  CAS  Google Scholar 

  6. Toyokuni S, Miyake N, Hiai H, Hagiwara M, Kawakishi S, Osawa T, Uchida K (1995) The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 349:189–191

    Article  Google Scholar 

  7. Kasai H, Nishimura S (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing reagents. Nucleic Acids Res 12:165–173

    Google Scholar 

  8. Hattori Y, Nishigori C, Tanaka T, Uchida K, Nikaido O, Osawa T, Hiai H, Imamura S, Toyokuni S (1996) 8-Hydroxy-2’-deoxyguanosine is increased in epidermal cells of hairless mice after chronic UVB exposure. J Invest Dermatol 107:733–737

    Article  PubMed  CAS  Google Scholar 

  9. Ramarathnam N, Osawa T, Namiki M, Kawakishi S (1989) Chemical studies on vovel rice hull antioxidants: 2. Identification, a C-glycosylfavonoid. J Agric Food Chem 37:316–319

    Article  CAS  Google Scholar 

  10. Tsuda T, Shiga K, Ohshima K, Osawa T (1996) Inhibition of lipid peroxidation and active oxygen radical scavenging effect of antho-cyanin pigments isolated from Phaselous vulgaris L. Biochem Pharmacol 52:1033–1039

    Article  PubMed  CAS  Google Scholar 

  11. Shiraki M, Hara Y, Osawa T, Kumon H, Nakayama T, Kawakishi S (1994) Antioxidative and antimutagenic effects of theaflavins from black teas. Mutat Res 323:29–34

    Article  PubMed  CAS  Google Scholar 

  12. Osawa T, Kumon H, Fukuda Y, Namiki M, Kawakishi S (1990) Antimutagenic heat stable antioxidants. In: Pariza MW, Aeschbacher HU, Felton JS, Sato S (eds) Mutagens and carcinogens in the Diet. Wiley-Liss, New York, pp 223–238

    Google Scholar 

  13. Katsuzaki H, Kawasumi M, Kawakishi S, Osawa T (1992) Structure of novel antioxidative lignan glucosides isolated from sesame seed. Biosci Biotechnol Biochem 56:2087–2088

    Article  CAS  Google Scholar 

  14. Katsuzaki H, Kawakishi S, Osawa T (1994) Sesaminol glucosides in sesame seeds. Phytochemistry (Oxf) 35:773–776

    Article  CAS  Google Scholar 

  15. Yamashita K, Iizuka Y, Katayama K, Namiki M (1995) Sesame seed and its lignans produce marked enhancement of vitamin E activity in rats fed a low tocopherol diet. Lipids 30:1019–1028

    Article  PubMed  CAS  Google Scholar 

  16. Shima A (1988) Effect of food components on cellular aging. In: Fujimaki M (ed) Food functionalities. Gakkai, Tokyo, pp 227–231

    Google Scholar 

  17. Osawa T, Sugiyama Y, Inayoshi M, Kawakishi S (1995) Antioxidative activity of tetrahydrocurcumin. Biosci Biotechnol Biochem 59:1609–1612

    Article  PubMed  CAS  Google Scholar 

  18. Nagabhushan M, Amonkar AJ, Bhide SV (1987) In vitro antimutagenicity of curcumin against environmental mutagens. Food Chem Toxicol 25:545–547

    Article  PubMed  CAS  Google Scholar 

  19. Huang M-T, Smart RC, Wong C-Q, Conney AH (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12–0-tetradecanoylphorbol-13-acetate. Cancer Res 48:5941–5946

    PubMed  CAS  Google Scholar 

  20. Rao CV, Rivenson A, Simi B, Reddy BS (1995) Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55:259–266

    PubMed  CAS  Google Scholar 

  21. Ravindranath V, Chandrasekhara N (1982) Metabolism of curcumin. Toxicology 22:337–344

    Article  CAS  Google Scholar 

  22. Holder GM, Plummer JL, Ryan A (1978) The metabolism and excretion of curcumin in the rat. Xenobiotica 8:761–768

    Article  PubMed  CAS  Google Scholar 

  23. Osawa T, Namiki M (1981) A novel type of antioxidant isolated from Eucalyptus leaves. Agric Biol Chem 45:735–939

    Article  CAS  Google Scholar 

  24. Hirose M, Ozaki K, Takabe K, Fukushima S, Shirai T, Ito N (1991) Modifying effects of the naturally occurring antioxidants 03B3; -oryzanol, phytic Acid, tannic acid and n-tritriacontane-16,18-dione in a rat wide-spectrum organ carcinogenesis model. Carcinogenesis (Oxf) 12:1917–1921

    Article  CAS  Google Scholar 

  25. Ha YL, Storkson J, Pariza MW (1990) Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res 50:1097–1101

    PubMed  CAS  Google Scholar 

  26. Sugiyama Y, Kawakishi S, Osawa T (1996) Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52:519–525

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this paper

Cite this paper

Osawa, T. (1997). Biochemical and Physiological Importance of Plant Polyphenols. In: Ohigashi, H., Osawa, T., Terao, J., Watanabe, S., Yoshikawa, T. (eds) Food Factors for Cancer Prevention. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67017-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67017-9_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67019-3

  • Online ISBN: 978-4-431-67017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics