Skip to main content

Soil and Belowground Characteristics of Pasoh Forest Reserve

  • Chapter
Pasoh

Abstract

We describe the soil and belowground characteristics of the Pasoh Forest Reserve (Pasoh FR), Peninsular Malaysia. Soil survey was conducted using the Malaysian classification system in primary and regenerating forests of Pasoh FR. The physical and chemical properties of various soil horizons were measured at the selected soil pits. Soil N dynamics as a soil biological process was also studied in a range of forest environments, including gap and closed forest. The fine root biomass in the topsoil was also quantified in primary forest. Pasoh FR has at least 18 soil types. The soils of Pasoh FR are whitish to yellowish in color rather than reddish. When compared to the other Southeast Asian tropical forest soils, the particle size distribution is characterized by lower sand and higher silt contents. Chemically, the Pasoh FR soil accumulates greater amounts of Al. Most CEC (cation exchange capacity) are occupied by Al. The high Al content leads to lower P availability. The pool of inorganic N at 0–10 cm soil depth ranges from 14.8 to 23.9 µgg N g-1. Net N mineralization rate in topsoil in the primary forest is estimated to be 100 kgN ha-1 yr-1. Nitrification is pronounced at uppermost layer. The fine root biomass (FRB) less than 2,3 and 5 mm in diameter (d) are 624, 751, 970 g m-2, respectively. Within the top 20 cm, the FRB (< 1 mm in d) constitutes 73% of the total FRB (< 5 mm in d) from 0–4 cm and about 40% in subsequent layers. The Pasoh FR soil is supposed to be infertile. Net N mineralization is observed mainly in the topsoil. These facts suggest that the FRB (< 2 mm in d) constitutes a major part of the total, especially in the top soil to effectively absorb mineral nutrients released from decomposing organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aber, J. D., Nadelhoffer, K. J., Streudler, P. & Melillo, J. M. (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378–386.

    Article  Google Scholar 

  • Allbrook, R. F. (1972) The soils of Pasoh forest reserve Negeri Sembilan. Malay. For. 36:22–33.

    Google Scholar 

  • Attiwill, P. M. & Adams, M. A. (1993) Nutrient cycling in forests. New Phytol. 124: 561–582.

    Article  CAS  Google Scholar 

  • Bashkin, V. N. & Kudeyarov, V. N. (1977) Studying the year round dynamics of mineral nitrogen in a grey forest soil. Sov. Soil Sci. 8:41–48 (in Russian with English summary).

    Google Scholar 

  • Bengough, A. G, Castrignano, A., Pages, L. & van Noordwijk, M. (2000) Sampling strategies, scaling, and statistics. In Smit, A. L., Bengough, A. G, Engels, C. & Pellerin, van N. S. (eds). Root methods. Springer-Verlag, Berlin, pp.147–173.

    Chapter  Google Scholar 

  • Binkley, D. & Hart, S. C. (1989) The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10:57–112.

    Article  CAS  Google Scholar 

  • Chapin III F. S., Molianen, L. & Kielland, K. (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153.

    Article  CAS  Google Scholar 

  • Clark, K. L., Nadkarni, N. M., Schaefer, D. & Gholts, H. L. (1998) Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. J. Trop. Ecol. 14: 27–45.

    Article  Google Scholar 

  • Dise, N. B. & Wright, R. F. (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For. Ecol. Manage. 71:153–161.

    Article  Google Scholar 

  • FAO (1995) Forest Resources Assessment 1990, Global synthesis. Forestry Paper No. 124. FAO, Rome.

    Google Scholar 

  • Ishizuka, S., Tanaka, S., Sakurai, K., Hirai, H., Hirotani, H., Ogino, K., Lee, H. S. & Kendawang, J. J. (1998) Characterization and distribution of soils at Lambir Hills National Park in Sarawak, Malaysia, with special reference to soil hardness and soil texture. Tropics 8: 31–44.

    Article  Google Scholar 

  • Jabatan Pertanian (1993) Panduan: Mengenali siri-siri tanah utama di Semenanjuang Malaysia. Jabatan Pertanian, Semananjung Malaysia, Kuala Lumpur. 118pp.

    Google Scholar 

  • Kauffman, S., Sombroek, W. & Mantel, S. (1998) Soils of rainforests: characterization and major constraints of dominant forest soils in the humid tropics. In Schulte, A. & Ruhiyat, D. (eds). Soils of Tropical Forest Ecosystems. Springer, Berlinpp. pp.9–20.

    Chapter  Google Scholar 

  • Lal, R. (1987) Tropical Ecology and Physical Edaphology J. Wiley & Sons, New York, 732pp.

    Google Scholar 

  • Manokaran, N. (1978) Nutrient concentration in precipitation, throughfall and stemflow in a lowland tropical rain forest in Peninsular Malaysia. Malay. Nat. J. 30: 423–432.

    Google Scholar 

  • Matson, P. A., Vitousek, P. M., Ewel, J. J., Mazzarino, M. J. & Robertson, G P. (1987) Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68:491–502.

    Article  Google Scholar 

  • Matson, P. A., McDowell, W. H., Townsend, A. R. & Vitousek, P. M. (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46: 67–83.

    CAS  Google Scholar 

  • Mbagwu, J. S. C, Lal, R. & Scott, T. W. (1983) Physical properties of three soils in southern Nigeria. Soil Sci. 136:48–55.

    Article  CAS  Google Scholar 

  • Neil, C, Piccolo, M. C, Steudler, P. A., Melillo, J. M., Feigl, B. J. & Cerri, C. C. (1995) Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon basin. Soil Biol. Biochem. 27:1167–1175.

    Article  Google Scholar 

  • Neil, C, Piccolo, M. C, Cerri, C. C, Steudler, P. A., Melillo, J. M. & Brito, M. (1997) Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110: 243–252.

    Article  Google Scholar 

  • Northup, R. R., Yu, Z. S., Dahlgren, R. A. & Vogt, K. A. (1995) Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229.

    Article  CAS  Google Scholar 

  • Ohta, S. & Effendi, S. (1992a) Ultisols of “lowland dipterocarp forest” in East Kalimantan, Indonesia. 1. Morphology and physical properties. Soil Sci. Plant Nut. 38: 197–206.

    Article  Google Scholar 

  • Ohta, S. & Effendi, S. (1992b) Ultisols of “lowland dipterocarp forest” in East Kalimantan, Indonesia. 2. Status of carbon, nitrogen, and phosphorus. Soil Sci. Plant Nut. 38: 207–216.

    Article  Google Scholar 

  • Ohta, S., Effendi, S., Tanaka, N. & Miura, S. (1993) Ultisols of “lowland dipterocarp forest” in East Kalimantan, Indonesia. 3. Clay minerals, free oxides, and exchangeable cations. Soil Sci. Plant Nut. 39:1–12.

    Article  CAS  Google Scholar 

  • Oliveira, M. R. G., van Noordwijk, M., Gaze, S. R., Brouwer, G., Bona, S., Mosca, G. & Hairiah, K. (2000) Auger sampling, ingrowth cores and pinboard methods. In Smit, A. L., Bengough, A. G., Engels, C. & Pellerin, van N. S. (eds). Root Methods. Springer-Verlag, Berlin, Heidelberg, Germany, pp.175–210.

    Chapter  Google Scholar 

  • Paramananthan, S. (1983) Field legend for soil surveys in Malaysia. UPM-PSTM, Kuala Lumpur, 80pp.

    Google Scholar 

  • Read, D. J., Leake, J. R. & Langdale A. R. (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In Boddy, L., Marchant, R. & Read, D. J. (eds). Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp.181–204.

    Google Scholar 

  • Reich, P. B., Grigal, D. F., Aber, J. D. & Gower, S. T. (1997) Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78: 335–347.

    Article  Google Scholar 

  • Richter, D. D. & Babbar, L. I. (1991) Soil diversity in the tropics. Adv. Ecol. Res. 21: 315–389.

    Article  Google Scholar 

  • Robertson, G P. (1984) Nitrification and nitrogen mineralization in a lowland rainforest succession in Costa Rica, Central America. Oecologia 61: 99–104.

    Article  Google Scholar 

  • Robertson, G. P. (1986) Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention. In Proctor, J. (ed). Mineral Nutrients in Tropical Forest and Savanna Ecosystems. Blackwell Scientific Publications, Oxford, pp.55–69.

    Google Scholar 

  • Roy, S. & Singh, J. S. (1995) Seasonal and spatial dynamics of plant-available N and P pools and N-mineralization in relation to fine roots in a dry tropical forest habitat. Soil Biol. Biochem. 27:33–40.

    Article  CAS  Google Scholar 

  • Sakurai, K., Tanaka, S., Ishizuka, S. & Kanzaki, M. (1998) Differences in soil properties of dry evergreen and dry deciduous forests in the Sakaerat Environmental Research Station. Tropics 8: 61–80.

    Article  Google Scholar 

  • Sanchez, P. A. (1976) Properties and management of soils in the tropics. J. Wiley & Sons, New York, 618pp.

    Google Scholar 

  • Singh, R. S., Raghubanshi, A. S. & Singh, J. S. (1991) Nitrogen-mineralization in dry tropical savanna: effects of burning and grazing. Soil Biol. Biochem. 23: 269–273.

    Article  CAS  Google Scholar 

  • Sulaiman, S., Abdul Rahim, N. & LaFrankie, J. V. (1994) Pasoh Climatic Summary (1991–1993). FRIM Research Data No. 3. FRIM, Kepong.

    Google Scholar 

  • Soil Survey Staff (1998) Keys to Soil Taxonomy. Eighth edition. USDA-NRCS, Washington D.C., 328pp.

    Google Scholar 

  • Tange, K., Yagi, H., Sasaki, S., Niiyama, K. & Abd. Rahman, K. (1998) Relationship between topography and soil properties in a hill dipterocarp forest dominated by Shorea curtsii at Semangkok Forest Reserve, Peninsular Malaysia. J. Trop. For. Sci. 10: 398–409.

    Google Scholar 

  • Vitousek, P. M. & Denslow, J. S. (1986) Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest. J. Ecol. 74:1167–1178.

    Article  Google Scholar 

  • Vitousek, P. M. & Howarth, R. W. (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115.

    Article  Google Scholar 

  • Vitousek, P. M. & Matson, P. A. (1988) Nitrogen transformations in a range of tropical forest soils. Soil Biol. Biochem. 20:361–367.

    Article  CAS  Google Scholar 

  • Vitousek, P. M. & Sanford Jr, R. L. (1986) Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17:137–167.

    Article  Google Scholar 

  • Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O’hara, J. & Asbjorsen, H. (1996) Reviews of root dynamics in forest ecosystems grouped by climate, climatic forest types and species. Plant Soil 187:159–219.

    Article  CAS  Google Scholar 

  • Wild, A. (1972) Nitrate leaching under bare fallow at a site in northern Nigeria. J. Soil Sci. 23: 315–324.

    Article  CAS  Google Scholar 

  • Woodruff, J. R. & Kamprath, E. J. (1965) Phosphorus adsorption maximum as measured by the Langmuir isotherm and its relationship to phosphorus availability. Soil Sci. Soc. Am. Proc. 29:148–150.

    Article  CAS  Google Scholar 

  • Yamashita, T. & Takeda, H. (1998) Decomposition and nutrient dynamics of leaf litter in litter bags of two mesh sizes set in two dipterocarp forest sites in Peninsular Malaysia. Pedobiologia 42:11–21.

    Google Scholar 

  • Yamashita, T., Takeda, H. & Watanabe, H. (1992) Spatio-temporal variations of mineral nitrogen in a Chamaecyparis obstusa plantation soil. Bull. Kyoto Univ. For. 64: 51–60 (in Japanese with English summary).

    Google Scholar 

  • Yamashita, T., Nakanishi, A., Tokuchi, N. & Takeda, H. (1999) Chemical properties and nutrient accumulation in two Siamese forest soils. Appl. For. Sci., Kansai 8: 89–94 (in Japanese with English summary).

    Google Scholar 

  • Yoda, K. & Kira, T. (1982) Accumulation of organic matter, carbon, nitrogen and other nutrient elements in the soils of a lowland rainforest at Pasoh, Peninsular Malaysia. Jpn. J. Ecol. 32:275–291.

    CAS  Google Scholar 

  • Zou, X., Valentine, D. W, Sanford Jr., R. L. & Binkley, D. (1992) Resin-core and buried bag estimates of nitrogen transformations in Costa Rican lowland rainforests. Plant Soil 139:275–283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Yamashita, T., Kasuya, N., Kadir, W.R., Chik, S.W., Seng, Q.E., Okuda, T. (2003). Soil and Belowground Characteristics of Pasoh Forest Reserve. In: Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S.C., Ashton, P.S. (eds) Pasoh. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67008-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67008-7_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67010-0

  • Online ISBN: 978-4-431-67008-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics