Skip to main content

Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements

  • Chapter
  • First Online:
Reproductive and Developmental Strategies

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

Hagfish have been recognized as important for investigating the evolution of vertebral elements, because of their crucial phylogenetic position; however, the deep-sea habitat of most hagfish species limits the number of available embryos, thus impeding studies of their embryology in general and of their axial skeletogenesis in particular. This paucity of hagfish embryos has long impeded attempts to determine whether the absence of vertebral elements in this animal represents the ancestral morphological state. However, embryonic materials recently obtained from the Japanese inshore hagfish (Eptatretus burgeri) have provided an opportunity to investigate the fine histology of the embryonic somite and gene expression patterns of somite derivatives. These approaches identified segmentally arranged mesenchyme-derived nodules of cartilage at the ventral aspect of the notochord. On the basis of the clear gene expression patterns of Twist and Pax1/9 (known as sclerotomal markers in gnathostomes), it is presumed that hagfish and gnathostomes share similar molecular developmental mechanisms for the vertebral elements. In sum, the common ancestor of all vertebrates likely possessed the developmental mechanisms that control expression of Twist and Pax1/9 and the formation of segmentally arranged vertebral elements. Thus, it is reasonable to assume that the hagfish vertebral elements, like the rest of the skeleton, represent a secondary degenerated condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayers H, Jackson C (1900) Morphology of the myxinoidei. I. Skeleton and musculature. J Morphol 17:185–226

    Article  Google Scholar 

  • Bardack D (1991) First fossil hagfish (Myxinoidea): a record from the Pennsylvanian of Illinois. Science 254(5032):701–703

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M, Bajard L, Daubas P, Esner M, Lagha M, Relaix F, Rocancourt D (2006) Myogenic progenitor cells in the mouse embryo are marked by the expression of Pax3/7 genes that regulate their survival and myogenic potential. Anat Embryol (Berl) 211(Suppl 1):51–56. https://doi.org/10.1007/s00429-006-0122-0

    Article  CAS  Google Scholar 

  • Christ B, Schmidt C, Huang R, Wilting J, Brand-Saberi B (1997) Segmentation of the vertebrate body. Anat Embryol (Berl) 197(1):1–8. https://doi.org/10.1007/s004290050116

    Article  Google Scholar 

  • Christ B, Schmidt C, Huang R, Wilting J, Brand-Saberi B (1998) Segmentation of the vertebrate body. Anat Embryol (Berl) 197(1):1–8

    Article  CAS  Google Scholar 

  • Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202(3):179–194

    Article  CAS  Google Scholar 

  • Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol (Berl) 208(5):333–350

    Article  Google Scholar 

  • Cole FJ (1905) A monograph on the general morphology of myxinoid fishes, based on a study of Myxine. Part 1. The anatomy of the skeleton. Trans R Soc Edin XLI (Part III (No. 30)749–791

    Google Scholar 

  • Cole F (1906) A monograph on the general morphology of the Myxinoid fishes, based on a study of Myxine. Part II. The anatomy of the muscles. Trans R Soc Edin 45:683–755

    Article  Google Scholar 

  • Conel JL (1929) The development of the brain of Bdellostoma stouti. I. External growth changes. J Comp Neurol 47:343–403

    Article  Google Scholar 

  • Conel JL (1931a) The development of the brain of Bdellostoma stouti II. Internal growth changes. J Comp Neurol 52:365–499

    Article  Google Scholar 

  • Conel JL (1931b) The genital system of the Myxinoidea: a study based on notes and drawing of these organs in Bedellostomata made by Bashford Dean, The Bashford Dean Memorial Volume: Archaic Fishes 67–102

    Google Scholar 

  • Conel JL (1942) The origin of the neural crest. J Comp Neurol 76:191–215

    Article  Google Scholar 

  • Conway Morris S, Caron JB (2014) A primitive fish from the Cambrian of North America. Nature 512(7515):419–422. https://doi.org/10.1038/nature13414

    Article  CAS  Google Scholar 

  • Cunningham B (1886) On the structure and development of the reproductive elements in Myxine glutinosa. Q J Microsc Sci 27:49–76

    Google Scholar 

  • Dean B (1897) The Columbia university zoological expedition of 1896 with a brief account of sound and on the Pacific coast. N Y Acad Sci XVI:33–43

    Google Scholar 

  • Dean B (1898) On the development of the Californian hag-fish, Bdellostoma stouti. Lockington. Q J Microsc Sci 40:269–279

    Google Scholar 

  • Dean B (1899) On the embryology of Bdellostoma stouti. A genera account of myxinoid development from the egg and segmentation to hatching. Festschrift zum 70ten Geburststag Carl von Kupffer. Gustav Fischer Verlag, Jena, pp 220–276

    Google Scholar 

  • Dean B (1904) Notes on Japanese Myxinoides. Jour College of Sci, Imperial University, Tokyo 19

    Google Scholar 

  • Dean B, Harrington NR, Calkins GN, Griffin BB (1896) Transactions of the New York Academy of Sciences. The Columbia University zoological expedition of 1896 with a brief account of the work of collecting in Puget Sound and on the Pacific coast 9:33–43

    Google Scholar 

  • Delarbre C, Gallut C, Barriel V, Janvier P, Gachelin G (2002) Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol Phylogenet Evol 22(2):184–192. https://doi.org/10.1006/mpev.2001.1045

    Article  PubMed  CAS  Google Scholar 

  • Doflein F (1899) Zur Entwicklungsgeschichte von Bdellostoma stouti Lock. Verhandl Deutsche zool Gesellsch Hamburg:21–30

    Google Scholar 

  • Donoghue PC, Forey PL, Aldridge RJ (2000) Conodont affinity and chordate phylogeny. Biol Rev Camb Philos 75(2):191–251. https://doi.org/10.1111/j.1469-185X.1999.tb00045.x

    Article  CAS  Google Scholar 

  • Fernholm B (1969) A third embryo of Myxine: considerations on hypophyseal ontogeny and phylogeny. Acta Zool-Stockholm 50:169–177

    Article  Google Scholar 

  • Fernholm B (1974) Diurnal variations in behaviour of the hagfish Eptatretus burgeri. Mar Biol 27:351–356

    Article  Google Scholar 

  • Fleming A, Kishida MG, Kimmel CB, Keynes RJ (2015) Building the backbone: the development and evolution of vertebral patterning. Development 142(10):1733–1744. https://doi.org/10.1242/dev.118950142/10/1733[pii]

    Article  PubMed  CAS  Google Scholar 

  • Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361:129–134

    Article  Google Scholar 

  • Foss G (1962) Some observations on the ecology of Myxine glutinosa L. Sarsia 7:17–22

    Article  Google Scholar 

  • Foss G (1968) Behavior of Myxine glutinosa L. Sarsia 31:1–14

    Article  Google Scholar 

  • Gadow H (1895) On the evolution of the vertebral column of fishes. Philos Trans R Soc B 56:163–221

    Article  Google Scholar 

  • Gadow H (1933) The evolution of the vertebral column. Cambridge University Press, Cambridge

    Google Scholar 

  • Gai Z, Donoghue PCJ, Zhu M, Janvier P, Stampanoni M (2011) Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476(7360):324–327. https://doi.org/10.1038/nature10276

    Article  PubMed  CAS  Google Scholar 

  • Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443(7114):981–984. https://doi.org/10.1038/nature05150

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist J (1918) Note on eggs and embryos of the South African myxinoid, Bdellostoma (Heptatretus) hexatrema, Müll. Q J Microsc Sci s2-63:141–159

    Google Scholar 

  • Goodrich ES (1930) Studies on the structure and development of vertebrates. Macmillan, London

    Book  Google Scholar 

  • Gorbman A (1958) Comparative anatomy of the hypophysis and observations on the mechanism of neurosecretion. In: Endocrinology, pp 368–392

    Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10(5):1135–1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregory WK (1930) Memorial of Bashford Dean. In: Gudger EW (ed) The Bashford Dean memorial volume archaic fishes. Order of the Trustees, New York

    Google Scholar 

  • Holland ND (2007) Hagfish embryos again: the end of a long drought. BioEssays 29(9):833–836

    Article  PubMed  Google Scholar 

  • Holmgren N (1946) On two embryos of Myxine glutinosa. Acta Zool-Stockholm:1–90

    Article  Google Scholar 

  • Huang R, Christ B (2000) Origin of the epaxial and hypaxial myotome in avian embryos. Anat Embryol (Berl) 202(5):369–374. https://doi.org/10.1007/s004290000130

    Article  CAS  Google Scholar 

  • Janvier P (1996) Early vertebrates. Clarendon Press, Oxford

    Google Scholar 

  • Janvier P (2008) Early jawless vertebrates and cyclostome origins. Zool Sci 25(10):1045–1056. https://doi.org/10.2108/zsj.25.1045

    Article  PubMed  Google Scholar 

  • Janvier P (2011) Comparative anatomy: all vertebrates do have vertebrae. Curr Biol 21(17):R661–R663. https://doi.org/10.1016/j.cub.2011.07.014

    Article  PubMed  CAS  Google Scholar 

  • Janvier P (2015) Facts and fancies about early fossil chordates and vertebrates. Nature 520(7548):483–489. https://doi.org/10.1038/nature14437

    Article  PubMed  CAS  Google Scholar 

  • Kalamajski S, Oldberg A (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29(4):248–253. https://doi.org/10.1016/j.matbio.2010.01.001S0945-053X(10)00005-3

    Article  PubMed  CAS  Google Scholar 

  • Kardong K (2011) Vertebrates: comparative anatomy, function, evolution, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Kobayashi HIT, Suzuki H, Sekimoto M (1972) Seasonal migration of the hagfish Eptatretus burgeri. Jpn J Ichthyol 19:191–194

    Google Scholar 

  • Kupffer Cv (1899) Zur Kopfentwicklung von Bdellostoma

    Google Scholar 

  • Kuraku S, Hoshiyama D, Katoh K, Suga H, Miyata T (1999) Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J Mol Evol 49(6):729–735

    Article  CAS  PubMed  Google Scholar 

  • Kuratani S, Nobusada Y, Horigome N, Shigetani Y (2001) Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc B 356(1414):1615–1632

    Article  CAS  Google Scholar 

  • Kuratani S, Kuraku S, Murakami Y (2002) Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 34(3):175–183

    Article  CAS  PubMed  Google Scholar 

  • Kuratani S, Murakami Y, Nobusada Y, Kusakabe R, Hirano S (2004) Developmental fate of the mandibular mesoderm in the lamprey, Lethenteron japonicum: comparative morphology and development of the gnathostome jaw with special reference to the nature of the trabecula cranii. J Exp Zool Part B 302(5):458–468

    Article  Google Scholar 

  • Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234(4):824–834. https://doi.org/10.1002/dvdy.20587

    Article  PubMed  Google Scholar 

  • Liem KF, Bemis WE, Walker WF, Kabce G (2001) Functional anatomy of the vertebrates: an evolutionary perspective. 3rd revised edition edn. Brooks Cole, Belmont

    Google Scholar 

  • Løvtrup S (1977) The phylogeny of vertebrata. Wiley, New York

    Google Scholar 

  • Lydon S (1985) Chinese gold: the Chinese in the Monterey Bay Region. Capitola Book Co, Capitola

    Google Scholar 

  • Mallatt J, Holland N (2013) Pikaia gracilens Walcott: stem chordate, or already specialized in the Cambrian? J Exp Zool Part B 320(4):247–271. https://doi.org/10.1002/jez.b.22500

    Article  Google Scholar 

  • Mallatt J, Sullivan J (1998) 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol Biol Evol 15(12):1706–1718

    Article  CAS  PubMed  Google Scholar 

  • McCauley DW, Bronner-Fraser M (2004) Conservation and divergence of BMP2/4 genes in the lamprey: expression and phylogenetic analysis suggest a single ancestral vertebrate gene. Evol Dev 6(6):411–422. https://doi.org/10.1111/j.1525-142X.2004.04054.x

    Article  PubMed  CAS  Google Scholar 

  • McCauley DW, Bronner-Fraser M (2006) Importance of SoxE in neural crest development and the evolution of the pharynx. Nature 441(7094):750–752. https://doi.org/10.1038/nature04691

    Article  PubMed  CAS  Google Scholar 

  • Morin-Kensicki EM, Melancon E, Eisen JS (2002) Segmental relationship between somites and vertebral column in zebrafish. Development 129(16):3851–3860

    PubMed  CAS  Google Scholar 

  • Müller J (1835) Veigleichende Anatomie der Myxinoiden, der Cyclostomen mit durchbohrtem Gaumen. Part 1. Osteologie und Myologie. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin: 65–340

    Google Scholar 

  • Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128(18):3521–3531

    PubMed  CAS  Google Scholar 

  • Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131(5):983–995. https://doi.org/10.1242/dev.00986

    Article  PubMed  CAS  Google Scholar 

  • Nansen F (1887) A protandric hermmaphrodite (Myxine glutinosa, L., amongst the vertebrates. Bergens Museums Aarsbertning for 1887

    Google Scholar 

  • Neidert AH, Virupannavar V, Hooker GW, Langeland JA (2001) Lamprey Dlx genes and early vertebrate evolution. Proc Natl Acad Sci U S A 98(4):1665–1670. https://doi.org/10.1073/pnas.98.4.1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumayer L (1938) Die Entwichlung des Kopfskelettes von Bdellostoma. Arch Ital Anat Embriol 40:1–222

    Google Scholar 

  • Ogasawara M, Shigetani Y, Hirano S, Satoh N, Kuratani S (2000) Pax1/Pax9-related genes in an Agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev Biol 223(2):399–410. https://doi.org/10.1006/dbio.2000.9756

    Article  PubMed  CAS  Google Scholar 

  • Ohtani K, Yao T, Kobayashi M, Kusakabe R, Kuratani S, Wada H (2008) Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. J Exp Zool Part B 310(7):596–607. https://doi.org/10.1002/jez.b.21231

    Article  CAS  Google Scholar 

  • Oisi Y, Ota KG, Fujimoto S, Kuratani S (2013a) Development of the chondrocranium in hagfishes, with special reference to the early evolution of vertebrates. Zool Sci 30(11):944–961. https://doi.org/10.2108/zsj.30.944

    Article  PubMed  Google Scholar 

  • Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S (2013b) Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493(7431):175–180. https://doi.org/10.1038/nature11794

    Article  PubMed  CAS  Google Scholar 

  • Oisi Y, Kakitani O, Kuratani S, Ota K (2015) Analysis of embryonic gene expression patterns in the Hagfish. In: Hauptmann G (ed) In situ hybridization methods, Neuromethods, vol 99. Springer, New York, pp 249–262. https://doi.org/10.1007/978-1-4939-2303-8_12

    Chapter  Google Scholar 

  • Ota KG, Kuratani S (2006) The history of scientific endeavors towards understanding hagfish embryology. Zool Sci 23(5):403–418

    Article  PubMed  Google Scholar 

  • Ota KG, Kuratani S (2008) Developmental biology of hagfishes, with a report on newly obtained embryos of the Japanese inshore hagfish, Eptatretus burgeri. Zool Sci 25(10):999–1011. https://doi.org/10.2108/zsj.25.999

    Article  PubMed  Google Scholar 

  • Ota KG, Kuraku S, Kuratani S (2007) Hagfish embryology with reference to the evolution of the neural crest. Nature 446(7136):672–675. https://doi.org/10.1038/nature05633

    Article  PubMed  CAS  Google Scholar 

  • Ota KG, Fujimoto S, Oisi Y, Kuratani S (2011) Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2:373. https://doi.org/10.1038/ncomms1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ota KG, Fujimoto S, Oisi Y, Kuratani S (2013) Late development of hagfish vertebral elements. J Exp Zool Part B 320B(3):129–139. https://doi.org/10.1002/jez.b.22489

    Article  CAS  Google Scholar 

  • Ota KG, Oisi Y, Fujimoto S, Kuratani S (2014) The origin of developmental mechanisms underlying vertebral elements: implications from hagfish evo-devo. Zoology 117(1):77–80. https://doi.org/10.1016/j.zool.2013.10.010

    Article  PubMed  Google Scholar 

  • Parker KW (1883) On the skeleton of the marsipobranch fishes. Part I. The myxinoids (Myxine, and Bdellostoma). Philos Trans R Soc Lond 174:373–409

    Article  Google Scholar 

  • Price G (1896a) Some points in the development of a myxinoid (Bdellostoma stouti Lockington). Anat Anz 12(Suppl):81–86

    Google Scholar 

  • Price G (1896b) Zur Ontogenie eines Myxinoiden (Bdellostoma stouti Lockington). Sitzungsberichte der Mathematisch-Physikalischen Classe der K.B. Akademie der Wissenschaften zu München, Bd 36. Heft 1:67–74

    Google Scholar 

  • Price G (1897) Development of the excretory organs of a myxioid, Bdellostoma stoutii Lockington. Zool Jahrb Abt Anat Ontogen 10:205–226

    Google Scholar 

  • Price G (1904) A further study of the excretory organs of a myxioid, Bdellostoma stouti. Am J Anat 4:117–138

    Article  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044):948–953. https://doi.org/10.1038/nature03594

    Article  PubMed  CAS  Google Scholar 

  • Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 283(31):21305–21309. https://doi.org/10.1074/jbc.R800020200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaffer J (1897) Bemerkungen uber die Histologie und Histogenese des Knorpels der Cyclostomen. Archiv fur mikroskopische Anatomie 50:170–188

    Article  Google Scholar 

  • Shu D (2003) A paleontological perspective of vertebrate origin. Chin Sci Bull 48:725–735

    Article  Google Scholar 

  • Shu DG, Luo HL, Conway Morris S, Zhang XL, Hu SX, Chen L, Han J, Zhu M, Li Y, Chen LZ (1999) Lower Cambrian vertebrates from South China. Nature 402(6757):42–46. https://doi.org/10.1038/46965

    Article  CAS  Google Scholar 

  • Steenstrup (1863) Oversigt. Dansk. Vidensk. Selsk. Forhandl.1863

    Google Scholar 

  • Stock DW, Whitt GS (1992) Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science 257(5071):787–789

    Article  CAS  PubMed  Google Scholar 

  • Stockard CR (1906a) The development of the mouth and gills in Bdellostoma stoutii. Am J Anat 5:481–517

    Article  Google Scholar 

  • Stockard CR (1906b) The development of the thyroid gland in Bdellostoma stoutii. Anat Anz 29:91–99

    Google Scholar 

  • Studnicka FK (1896) Ueber die Histologie und Histogenese des Knorpels der Cyclostomen. Arch Mikrosk Anat 48:463–606

    Article  Google Scholar 

  • Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S (2011) Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. J Exp Zool B 316(7):526–546. https://doi.org/10.1002/jez.b.21427

    Article  CAS  Google Scholar 

  • Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Klein J (2003) Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. Mol Biol Evol 20(2):287–292. https://doi.org/10.1093/molbev/msg040

    Article  PubMed  CAS  Google Scholar 

  • Tretjakoff D (1926) Die Wirbeläule des Neunauges. Anat Anz 61:387–396

    Google Scholar 

  • Wake BD (1992) The endoskeleton: the comparative anatomy of the vertebral column and ribs. Hyman’s comparative vertebrate anatomy, 3rd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Worthington J (1905) Contribution to our knowledge of the myxinoids. Am Nat 39:625–662

    Article  Google Scholar 

  • Yalden (1985) Feeding mechanisms as evidence for cyclosome monophyly. Zool J Linn Soc-Lond 84:291–300

    Article  Google Scholar 

  • Zhang G, Miyamoto MM, Cohn MJ (2006) Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proc Natl Acad Sci U S A 103(9):3180–3185. https://doi.org/10.1073/pnas.0508313103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinya G. Ota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ota, K.G. (2018). Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements. In: Kobayashi, K., Kitano, T., Iwao, Y., Kondo, M. (eds) Reproductive and Developmental Strategies. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56609-0_29

Download citation

Publish with us

Policies and ethics