Skip to main content

Introduction

  • Chapter
  • First Online:
Beginner’s Guide to Flux Crystal Growth

Part of the book series: NIMS Monographs ((NIMSM))

  • 1624 Accesses

Abstract

This chapter begins by describing the importance of single crystals and crystal growth in solid-state research, the difference between single crystals and polycrystals, the size of single crystals needed for physical property measurements, and the types of crystals frequently studied by solid-state physicists. The uses of single crystals in solid-state chemistry, applied physics, and mineralogy are also discussed. An overview of flux growth is then presented, using the growth of ruby crystals as an example. Then, other methods of crystal growth, including crystal growth from the melts, solutions, and vapors, are described. The comparison between various techniques of crystal growth underscores the important features of flux growth in solid-state research. This chapter ends by providing various resources on flux growth, where the theories and practices of flux growth have been reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Single crystals of GaN can be grown in a pressurized nitrogen atmosphere using Na as a flux.

References

  1. M. Tachibana, H. Kawaji, T. Atake, Phys. Rev. B 70, 064103 (2004)

    Article  ADS  Google Scholar 

  2. T. Feder, Phys. Today 60(8), 26–28 (2007)

    Article  Google Scholar 

  3. P.C. Canfield, Nat. Phys. 4, 167–169 (2008)

    Article  Google Scholar 

  4. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nat. Phys. 5, 398–402 (2009)

    Article  Google Scholar 

  5. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908–910 (1987)

    Article  ADS  Google Scholar 

  6. R.J. Cava, B. Batlogg, R.B. van Dover, D.W. Murphy, S. Sunshine, T. Siegrist, J.P. Remeika, E.A. Rietman, S. Zahurak, G.P. Espinosa, Phys. Rev. Lett. 58, 1676–1679 (1987)

    Article  ADS  Google Scholar 

  7. H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, H. Ohta, Phys. Rev. Lett. 94, 227201 (2005)

    Article  ADS  Google Scholar 

  8. P. Gehring, H.M. Benia, Y. Weng, R. Dinnebier, C.R. Ast, M. Burghard, K. Kern, Nano Lett. 13, 1179–1184 (2013)

    Article  ADS  Google Scholar 

  9. T.H. Maiman, Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  10. R.C. Linares, J. Phys. Chem. Solids 26, 1817–1820 (1965)

    Article  ADS  Google Scholar 

  11. D. Aoki, Y. Haga, T.D. Matsuda, N. Tateiwa, S. Ikeda, Y. Homma, H. Sakai, Y. Shiokawa, E. Yamamoto, A. Nakamura, R. Settai, Y. Onuki, J. Phys. Soc. Jpn. 76, 063701 (2007)

    Article  ADS  Google Scholar 

  12. R. Liang, D.A. Bonn, W.N. Hardy, Philos. Mag. 92, 2563–2581 (2012)

    Article  ADS  Google Scholar 

  13. Y. Hidaka, M. Suzuki, Prog. Cryst. Growth Charact. Mater. 23, 179–243 (1991)

    Article  Google Scholar 

  14. N. Ghosh, S. Elizabeth, H.L. Bhat, U.K. Rößler, K. Nenkov, S. Rößler, K. Dörr, K.-H. Müller, Phys. Rev. B 70, 184436 (2004)

    Article  ADS  Google Scholar 

  15. T. Yankova, D. Hüvonen, S. Mühlbauer, D. Schmidiger, E. Wulf, S. Zhao, A. Zheldev, T. Hong, V.O. Garlea, R. Custelcean, G. Ehlers, Philos. Mag. 92, 2629–2647 (2012)

    Article  ADS  Google Scholar 

  16. D. Elwell, H.J. Scheel, Crystal Growth from High-Temperature Solutions (Academic Press, London, 1975)

    Google Scholar 

  17. R.A. Laudise, in The Art and Science of Growing Crystals, ed. by J. J. Gilman (Wiley, New York, 1963), pp. 252–273

    Google Scholar 

  18. E.A.D. White, in Technique of Inorganic Chemistry, vol. 4, ed. by H.B. Jonassen, A. Weissberger (Wiley, New York, 1965), pp. 31–64

    Google Scholar 

  19. J.B. Schroeder, R.C. Linares, in Progress in Ceramic Science, vol. 4, ed. by J.E. Burke (Academic Press, London, 1966), pp. 196–216

    Google Scholar 

  20. R.A. Laudise, The Growing of Single Crystals (Prentice Hall, Engelwood Cliffs, N. J., 1970)

    Google Scholar 

  21. A.B. Chase, in Preparation and Properties of Solid State Materials, vol. 1, ed. by R.A. Lefever (Dekker, New York, 1971), pp. 183–264

    Google Scholar 

  22. A.M. Anthony, R. Collongues, in Preparative Methods in Solid State Chemistry, ed. by P. Hagenmuller (Academic Press, New York, 1972), pp. 147–249

    Google Scholar 

  23. J.C. Brice, The Growth of Crystals from Liquids (North-Holland, Amsterdam, 1973)

    Google Scholar 

  24. D. Elwell, in Crystal Growth, ed. by B.R. Pamplin (Pergamon, Oxford, 1975), pp. 185–216

    Google Scholar 

  25. B. Wanklyn, in Crystal Growth, ed. by B.R. Pamplin (Pergamon, Oxford, 1975), pp. 217–288

    Google Scholar 

  26. R.A. Laudise, in Treatise on Solid State Chemistry, vol. 5, ed. by N.B. Hannay (Plenum Press, New York, 1975), pp. 407–461

    Google Scholar 

  27. D. Elwell, in Crystal Growth, Second edition, ed. by B.R. Pamplin (Pergamon, Oxford, 1980), pp. 463–483

    Google Scholar 

  28. H.J. Scheel, Prog. Cryst. Growth Charact. 5, 277–290 (1982)

    Article  Google Scholar 

  29. B. Wanklyn, J. Cryst. Growth 65, 533–540 (1983)

    Article  ADS  Google Scholar 

  30. W. Tolksdorf, in Crystal Growth of Electronic Materials, ed. by E. Kaldis (Elsevier, Amsterdam, 1985), pp. 175–182

    Google Scholar 

  31. J.C. Brice, Crystal Growth Processes (Blackie, Glasgow, 1986)

    Google Scholar 

  32. E.A. Giess, in Advanced Crystal Growth, ed. by P.M. Dryburgh, B. Cockayne, K.G. Barraclough (Prentice Hall, London, 1987), pp. 245–265

    Google Scholar 

  33. D. Elwell, in Crystal Growth in Science and Technology, ed. by H. Ahrend, J. Hulliger (Plenum Press, New York, 1989), pp. 133–142

    Google Scholar 

  34. E. Pollert, M. Nevřiva, S. Durčok, Prog. Cryst. Growth Charact. Mater. 22, 143–182 (1991)

    Article  Google Scholar 

  35. W. Tolksdorf, in Handbook of Crystal Growth, vol. 2, ed. by D.T.J. Hurle (Elsevier, Amsterdam, 1994), pp. 563–611

    Google Scholar 

  36. D.E. Bugaris, H.-C. zur Loye, Angew. Chem. Int. Ed. 51, 3780–3811 (2012)

    Google Scholar 

  37. N.P. Luzhnaya, J. Cryst. Growth 3–4, 97–107 (1968)

    Article  ADS  Google Scholar 

  38. R.H. Deitch, in Crystal Growth, ed. by B.R. Pamplin (Pergamon, Oxford, 1975), pp. 428–496

    Google Scholar 

  39. V.N. Gurin, M.M. Korsukova, Prog. Cryst. Growth Charact. 6, 59–101 (1983)

    Article  Google Scholar 

  40. T. Lundström, J. Less-Common Metals 100, 215–228 (1984)

    Article  Google Scholar 

  41. Z. Fisk, J.P. Remeika, in Handbook on the Physics and Chemistry of Rare Earths, vol. 12, ed. by K.A. Gschneider, Jr., L. Eyring (Elsevier, Amsterdam, 1989), pp. 53–70

    Google Scholar 

  42. P.C. Canfield, Z. Fisk, Philos. Mag. B 65, 1117–1123 (1992)

    Article  ADS  Google Scholar 

  43. P.C. Canfield, I.R. Fisher, J. Cryst. Growth 225, 155–161 (2001)

    Article  ADS  Google Scholar 

  44. M.G. Kanatzidis, R. Pöttgen, W. Jeitschko, Angew. Chem. Int. Ed. 44, 6996–7023 (2005)

    Google Scholar 

  45. E.L. Thomas, J.N. Millican, E.K. Okudzeto, J.Y. Chan, Comments Inorg. Chem. 27, 1–39 (2006)

    Article  Google Scholar 

  46. P.C. Canfield, in Properties and Applications of Complex Intermetallics, ed. by E. Belin-Ferré (World Scientific, Singapore, 2010), pp. 93–111

    Google Scholar 

  47. W.A. Phelan, M.C. Menard, M.J. Kandas, G.T. McCandless, B.L. Drake, J.Y. Chan, Chem. Mater. 24, 409–420 (2012)

    Article  Google Scholar 

  48. C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, J. Phys.: Condens. Matter 13, L337–L342 (2001)

    ADS  Google Scholar 

  49. R.E. Baumbach, Z. Fisk, F. Ronning, R. Movshovich, J.D. Thompson, E.D. Bauer, Philos. Mag. 94, 3663–3671 (2014)

    Article  ADS  Google Scholar 

  50. M.D. Lumsden, B.D. Gaulin, H. Dabkowska, M.L. Plumer, Phys. Rev. Lett. 76, 4919–4922 (1996)

    Article  ADS  Google Scholar 

  51. B.M. Wanklyn, A. Maqsood, J. Mater. Sci. 14, 1975–1981 (1979)

    Article  ADS  Google Scholar 

  52. A. Kania, A. Słodczyk, Z. Ujma, J. Cryst. Growth 289, 134–139 (2006)

    Article  ADS  Google Scholar 

  53. B.M. Wanklyn, J. Mater. Sci. 7, 813–821 (1972)

    Article  ADS  Google Scholar 

  54. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)

    Article  ADS  Google Scholar 

  55. D.P. Chen, C.T. Lin, Supercond. Sci. Technol. 27, 103002 (2014)

    Article  ADS  Google Scholar 

  56. I.R. Fisher, M.C. Shapiro, J.G. Analytis, Philos. Mag. 92, 2401–2435 (2012)

    Article  ADS  Google Scholar 

  57. V.N. Gurin, M.M. Korsukova, S.P. Nikanorov, I.A. Smirnov, N.N. Stepanov, S.G. Shul’man, J. Less-Common Met. 67, 115–123 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tachibana .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Institute for Materials Science, Japan

About this chapter

Cite this chapter

Tachibana, M. (2017). Introduction. In: Beginner’s Guide to Flux Crystal Growth. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56587-1_1

Download citation

Publish with us

Policies and ethics