Skip to main content

Eukaryotic d-Serine Dehydratase

  • Chapter
  • First Online:
D-Amino Acids

Abstract

In mammals, d-serine is endogenously synthesized by serine racemase (SR), and it plays important roles in memory and learning by binding to the N-methyl-d-aspartate (NMDA) receptor and δ2 glutamate receptor. d-Amino acid oxidase (DAO) is the only mammalian enzyme that degrades d-serine. Many eukaryotes, excluding mammals, have another d-serine-degrading enzyme, d-serine dehydratase (DSD). DSD is a pyridoxal 5′-phosphate (PLP)- and Zn2+-dependent enzyme that catalyzes the deamination of d-serine to produce pyruvate and ammonia, and it is distinct from the classical d-serine dehydratases such as DsdA of Escherichia coli. In chicken, DSD is expressed in the kidney, liver, and brain, and it plays a primary role in removing d-serine from the circulating blood. The cellular slime mold Dictyostelium discoideum contains three d-serine-metabolizing enzymes, SR, DAO, and DSD. Among these enzymes, DSD is responsible for d-serine degradation. Although the physiological significance of DSD is still unclear, it is thought to contribute to the maintenance of d-serine at low levels in these organisms. This article describes the biological distribution, physiological role, enzyme properties, structure, reaction mechanism, and application of DSD based on recent studies of the enzyme in chicken and yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Couñago RM et al (2009) Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames). BMC Struct Biol 9:53

    Google Scholar 

  • De Miranda J et al (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-d-aspartate (NMDA) receptor coagonist d-serine. Proc Natl Acad Sci U S A 99(22):14542–14547

    Google Scholar 

  • Goto M et al (2009) Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J Biol Chem 284:25944–25952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiike K et al (1985) Histochemical staining of cells containing flavoenzyme d-amino-acid oxidase based on its enzymatic activity: application of a coupled peroxidation method. Acta Histochem Cytochem 18:539–550

    Google Scholar 

  • Horiike K et al (1987) Localization of d-amino acid oxidase in Bergmann glial cells and astrocytes of rat cerebellum. Brain Res Bull 19:587–596

    Article  CAS  PubMed  Google Scholar 

  • Inagaki K et al (1986) Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization. Biochemistry 25(11):3268–3274

    Article  CAS  PubMed  Google Scholar 

  • Ito T et al (2007) Enzymatic assay of d-serine using d-serine dehydratase from Saccharomyces cerevisiae. Anal Biochem 371(2):167–172

    Article  CAS  PubMed  Google Scholar 

  • Ito T et al (2008) A novel zinc-dependent d-serine dehydratase from Saccharomyces cerevisiae. Biochem J 409(2):399–406

    Article  CAS  PubMed  Google Scholar 

  • Ito T et al (2012) Role of zinc ion for catalytic activity in d-serine dehydratase from Saccharomyces cerevisiae. FEBS J 279(4):612–624

    Article  CAS  PubMed  Google Scholar 

  • Ito T et al (2014) Reaction mechanism of Zn2+-dependent d-serine dehydratase: role of a conserved tyrosine residue interacting with pyridine ring nitrogen of pyridoxal 5′-phosphate. J Biochem 156(3):173–180

    Google Scholar 

  • Liu JQ et al (1998) A novel metal-activated pyridoxal enzyme with a unique primary structure, low specificity d-threonine aldolase from Arthrobacter sp. Strain DK-38. Molecular cloning and cofactor characterization. J Biol Chem 273(27):16678–16685

    Article  CAS  PubMed  Google Scholar 

  • Naka T et al (2010) A highly sensitive enzymatic assay for d- and total serine detection using d-serine dehydratase from Saccharomyces cerevisiae. J Mol Catal B Enzym 67:150–154

    Article  CAS  Google Scholar 

  • Nishikawa T (2011) Analysis of free d-serine in mammals and its biological relevance. J Chromatogr B Anal Technol Biomed Life Sci 879(29):3169–3183

    Article  CAS  Google Scholar 

  • Nishimura Y et al (2014) Immunohistochemical localization of d-serine dehydratase in chicken tissues. Acta Histochem 116:702–707

    Article  CAS  PubMed  Google Scholar 

  • Schell MJ (2004) The N-methyl d-aspartate receptor glycine site and d-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B 359:943–964

    Article  CAS  Google Scholar 

  • Scolari MJ, Acosta GB (2007) d-Serine: a new word in the glutamatergic neuro-glial language. Amino Acids 33:563–574

    Article  CAS  PubMed  Google Scholar 

  • Suzuki C et al (2011) Rapid determination of free d-serine with chicken d-serine dehydratase. J Chromatogr B Anal Technol Biomed Life Sci 879(29):3326–3330

    Article  CAS  Google Scholar 

  • Tanaka H et al (2007) Simultaneous measurement of d-serine dehydratase and d-amino acid oxidase activities by the detection of 2-oxo acid formation with reverse-phase high-performance liquid chromatography. Anal Biochem 362:83–88

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H et al (2008) d-Serine dehydratase from chicken kidney: a vertebral homologue of the cryptic enzyme from Burkholderia cepacia. J Biochem 143:49–57

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H et al (2009) Discovery of d-serine dehydratase in vertebrate and its deficiency in mammals. Tanpakushitsu Kakusan Koso 54:1190–1196

    CAS  PubMed  Google Scholar 

  • Tanaka H et al (2011) Crystal structure of a zinc-dependent d-serine dehydratase from chicken kidney. J Biol Chem 286(31):27548–27558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urusova DV et al (2012) Crystal structure of d-serine dehydratase from Escherichia coli. Biochim Biophys Acta 1824(3):422–432

    Article  CAS  PubMed  Google Scholar 

  • Yamada T et al (2003) Crystal structure of serine dehydratase from rat liver. Biochemistry 42(44):12854–12865

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomokazu Ito or Hiroyuki Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ito, T., Yoshimura, T., Ishida, T., Tanaka, H. (2016). Eukaryotic d-Serine Dehydratase. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_20

Download citation

Publish with us

Policies and ethics