Skip to main content

Distribution, Evolution, and Physiology of Oxidative Fermentation

  • Chapter
  • First Online:
Acetic Acid Bacteria

Abstract

Acetic acid bacteria inhabit sugar-rich niches, especially fruits and flowers, and thus have the ability to utilize sugars or sugar alcohols for their energy sources. The strategy of sugar utilization is rather exceptional: they oxidize such the substrates by “oxidative fermentation” and utilize the accumulated products later. The oxidative fermentation is carried out by the respiratory chain comprising periplasmic primary dehydrogenases of quinoproteins or flavoprotein–cytochrome c complexes and (terminal) ubiquinol oxidases, both of which seem to be acquired by adaptive evolution in such a sugar-rich niche by interacting with other microbes living at the same habitat. In this chapter, the evolution and physiology of such a respiratory chain related to oxidative fermentation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K (2001) Membrane-bound quinoprotein d-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechnol Biochem 65:2755–2762

    Article  CAS  PubMed  Google Scholar 

  • Asai T (1968) Acetic acid bacteria. Classification and biochemical activities. Tokyo University Press, Tokyo

    Google Scholar 

  • Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertalan M et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Castresana J, Lübben M, Saraste M, Higgins DG (1994) Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J 13:2516–2525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cleton-Jansen AM, Goosen N, Vink K, van de Putte P (1989) Cloning, characterization and DNA sequencing of the gene encoding the M r 50,000-quinoprotein glucosedehydrogenase from Acinetobacter calcoaceticus. Mol Gen Genet 217:430–436

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Du G, Zhou J, Chen J, Liu J (2013) Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of l-sorbose to 2-keto-l-gluconic acid in Ketogulonicigenium vulgare WSH-001. Biotechnol Prog 29:1398–1404

    Article  CAS  PubMed  Google Scholar 

  • Görisch H, Rupp M (1989) Quinoprotein ethanol dehydrogenase from Pseudomonas. Antonie Van Leeuwenhoek 56:35–45

    Article  PubMed  Google Scholar 

  • Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Barbian KD, Babar A, Dorward DW, Holland SM (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189:8727–8736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groen BW, van Kleef MA, Duine JA (1986) Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochem J 234:611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagan CL, Kim S, Kahne D (2010) Reconstitution of outer membrane protein assembly from purified components. Science 328:890–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashiura N, Hadano H, Hirakawa H, Matsutani M, Takebe S, Matsushita K, Azuma Y (2014) Draft genomic DNA sequence of the facultatively methylotrophic bacterium Acidomonas methanolica type strain MB58. FEMS Microbiol Lett 351:9–13

    Article  CAS  Google Scholar 

  • Hölscher T, Weinert-Sepalage D, Görisch H (2007) Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153:499–506

    Article  PubMed  Google Scholar 

  • Inose K, Fujikawa M, Yamazaki T, Kojima K, Sode K (2003) Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli. Biochim Biophys Acta 1645:133–138

    Article  CAS  PubMed  Google Scholar 

  • Kataoka N, Matsutani M, Yakushi T, Matsushita K (2015) Efficient production of 2,5-diketo-d-gluconate via heterologous expression of 2-keto-gluconate dehydrogenase in Gluconobacter japonicus. Appl Environ Microbiol 81:3552–3560

    Google Scholar 

  • Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K (2013) Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl Environ Microbiol 79:1654–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita K, Konishi K, Anraku Y (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b 562-o complex from cells in the early exponential phase of aerobic growth. J Biol Chem 259:3368–3374

    CAS  PubMed  Google Scholar 

  • Matsushita K, Adachi O (1993) Bacterial quinoproteins glucose dehydrogenase and alcohol dehydrogenase. In: Davidson V (ed) Principles and applications of quinoproteins. Dekker, New York, pp 47–63

    Google Scholar 

  • Matsushita K, Shinagawa E, Ameyama M (1982) d-Gluconate dehydrogenase from bacteria, 2-keto-d-gluconate-yielding, membrane-bound. Methods Enzymol 89:187–193

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Patel L, Kaback HR (1984) Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation. Biochemistry 23:4703–4714

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Ebisuya H, Adachi O (1992a) Homology in the structure and the prosthetic groups between two different terminal ubiquinol oxidases, cytochrome a 1 and cytochrome o, of Acetobacter aceti. J Biol Chem 267:24748–24753

    CAS  PubMed  Google Scholar 

  • Matsushita K, Takahashi K, Takahashi M, Ameyama M, Adachi O (1992b) Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus. J Biochem (Tokyo) 111:739–747

    CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Toyama H, Yamada M, Adachi O (2002) Quinoproteins: structure, function, and biotechnological applications. Appl Microbiol Biotechnol 58:13–22

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-Keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Inoue T, Theeragool G, Trcek J, Toyama H, Adachi O (2005) Acetic acid production in acetic acid bacteria leading to their ‘death’ and survival. In: Yamada M (ed) Survival and death in bacteria. Research Signpost, Kerala, pp 169–181

    Google Scholar 

  • Matsushita K, Kobayashi Y, Mizuguchi M, Toyama H, Adachi O, Sakamoto K, Miyoshi H (2008) A tightly bound quinone functions in ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of acetic acid bacteria, Gluconobacter suboxydans. Biosci Biotechnol Biochem 72:2723–2731

    Article  CAS  PubMed  Google Scholar 

  • Matsutani M, Hirakawa H, Yakushi T, Matsushita K (2011) Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett 315:122–128

    Article  CAS  PubMed  Google Scholar 

  • Matsutani M, Fukushima K, Kayama C, Arimitsu M, Hirakawa H, Toyama H, Adachi O, Yakushi T, Matsushita K (2014a) Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria. Biochim Biophys Acta Bioenerg 1837:1810–1820

    Article  CAS  Google Scholar 

  • Matsutani M, Suzuki H, Yakushi T, Matsushita K (2014b) Draft genome sequence of Gluconobacter thailandicus NBRC 3257. Stand Genomic Sci 9:614–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura H, Mogi T, Ano Y, Migita CT, Matsutani M, Yakushi T, Kita K, Matsushita K (2013) Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. J Biochem (Tokyo) 153:535–545

    Article  CAS  Google Scholar 

  • Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Sugisawa T, Hoshino T (2006) Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of l-sorbosone to l-ascorbic acid. Appl Environ Microbiol 72:1487–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K, Matsushita K, Fujita N, Shirai M (2011) Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 193:6997–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oubrie A (2003) Structure and mechanism of soluble glucose dehydrogenase and other PQQ-dependent enzymes. Biochim Biophys Acta 1647:143–151

    Article  CAS  PubMed  Google Scholar 

  • Peters B, Mientus M, Kostner D, Junker A, Liebl W, Ehrenreich A (2013) Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl Microbiol Biotechnol 97:6397–6412

    Article  CAS  PubMed  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Pujol CJ, Kado CI (2000) Genetic and biochemical characterization of the pathway in Pantoea citrea leading to pink disease of pineapple. J Bacteriol 182:2230–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richhardt J, Bringer S, Bott M (2012) Mutational analysis of the pentose phosphate and Entner–Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl Environ Microbiol 78:6975–6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H (2009) Screening of thermotolerant Gluconobacter strains for production of 5-keto-d-gluconic acid and disruption of flavin adenine dinucleotide-containing d-gluconate dehydrogenase. Appl Environ Microbiol 75:4240–4247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiki K, Mogi T, Anraku Y (1992) Heme O biosynthesis in Escherichia coli: the cyoE gene in the cytochrome bo operon encodes a protoheme IX farnesyltransferase. Biochem Biophys Res Commun 189:1491–1497

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Yamazaki S, Ishii M, Igarashi Y, Arai H (2013) Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti. J Biosci Bioeng 115:32–36

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1984) d-Gluconate dehydrogenase, 2-keto-d-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization. Agric Biol Chem 48:1517–1522

    CAS  Google Scholar 

  • Swings J, Gillis M, Kersters K, De Vos P, Gossle F, De Ley J (1980) Frateuria, a new genus for “Acetobacter aurantius”. Int J Syst Bacteriol 30:547–556

    Article  CAS  Google Scholar 

  • Toyama H, Mathews FS, Adachi O, Matsushita K (2004) Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys 428:10–21

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K (2005) Molecular properties of membrane-bound FAD-containing d-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci Biotechnol Biochem 69:1120–1129

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Furuya N, Saichana I, Ano Y, Adachi O, Matsushita K (2007) Membrane-bound, 2-keto-d-gluconate-yielding d-gluconate dehydrogenase from “Gluconobacter dioxyacetonicus” IFO 3271: molecular properties and gene disruption. Appl Environ Microbiol 73:6551–6556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trček J, Matsushita K (2013) A unique enzyme of acetic acid bacteria, PQQ-dependent alcohol dehydrogenase, is also present in Frateuria aurantia. Appl Microbiol Biotechnol 97:7369–7376

    Article  PubMed  Google Scholar 

  • Van Spanning RJ, Wansell CW, De Boer T, Hazelaar MJ, Anazawa H, Harms N, Oltmann LF, Stouthamer AH (1991) Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans: inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth. J Bacteriol 173:6948–6961

    PubMed  PubMed Central  Google Scholar 

  • Vangnai AS, Toyama H, De-Eknamkul W, Yoshihara N, Adachi O, Matsushita K (2004) Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase. FEMS Microbiol Lett 241:157–162

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Sumi K, Matsushita K, Adachi O, Yamada Y (1993) Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem 268:12812–12817

    CAS  PubMed  Google Scholar 

  • Yang T (1986) Biochemical and biophysical properties of cytochrome o of Azotobacter vinelandii. Biochim Biophys Acta 848:342–351

    Article  CAS  PubMed  Google Scholar 

  • Yum DY, Lee YP, Pan JG (1997) Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. J Bacteriol 179:6566–6572

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Matsushita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsushita, K., Matsutani, M. (2016). Distribution, Evolution, and Physiology of Oxidative Fermentation. In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_7

Download citation

Publish with us

Policies and ethics