Skip to main content

Brain Aging as a Cause of Alzheimer’s Disease

  • Chapter
Book cover Aging Mechanisms

Abstract

Alzheimer’s disease (AD) is the most common form of senile dementia. Identification of genes causally associated with familial Alzheimer’s disease (FAD) advanced our understanding of the molecular mechanisms of AD pathogenesis. However, FAD is much less common than sporadic Alzheimer’s disease (SAD), which constitutes the majority of cases. Despite its similar pathology (albeit at a later age of onset), SAD is not linked to mutations in FAD-associated genes. In both FAD and SAD, the generation and oligomerization of amyloid β (Aβ) peptide play central roles in neurotoxicity, but it remains unclear how qualitative and quantitative alterations in Aβ occur in SAD patients in the absence of causative mutations. The predominant risk factor for SAD is aging, suggesting that some as-yet-unknown alterations in the aged brain augment the amyloidogenic metabolism of APP and promote the neural toxicity of Aβ oligomers. In this chapter, we discuss potential biochemical changes in amyloid β precursor protein (APP) and proteins related to APP metabolism and function in the aged brain. APP axonal transport, membrane microlocalization and metabolism, including generation of Aβ in neurons, are regulated by interactions with several cytoplasmic proteins and phosphorylation of the APP cytoplasmic region. Age-related decline or aberration in the regulation of APP transport, localization and metabolism may induce generation of altered Aβ. Here, we focus on APP phosphorylation at threonine 668 in the cytoplasmic domain and the roles of APP regulatory proteins, including X11-like (X11L), JIP1, kinesin-1, and Alcadein, on the regulation of APP metabolism and intracellular trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando K, Iijima KI, Elliott JI, Kirino Y, Suzuki T (2001) Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with FE65 affects the production of β-amyloid. J Biol Chem 276:40353–40361

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Tomita S, Yamaguchi H, Miyagi N, Sumioka A, Kirino Y, Suzuki T (2003) Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein mediated stabilization of amyloid β-protein precursor metabolism. J Biol Chem 278:49448–49458

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Miyagi N, Kato N, Yoshida T, Wada S, Nishimura M, Komano H, Yamamoto T, De Strooper B, Yamamoto K, Suzuki T (2004) Coordinated metabolism of Alcadein and amyloid β-protein precursor regulates FE65-dependent gene transactivation. J Biol Chem 279:24343–24354

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Kawano T, Taru H, Saito Y, Wada S, Miyamoto K, Kobayashi H, Ishikawa HO, Ohsugi Y, Yamamoto T, Matsuno K, Kinjo M, Suzuki T (2007) The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport. EMBO J 26:1475–1486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beel A, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR (2008) Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP). Does APP functions as a cholesterol sensor? Biochemistry 47:9428–9446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiba K, Araseki M, Nozawa K, Furukori K, Araki Y, Matsushima T, Nakaya T, Hata S, Saito Y, Uchida S, Okada Y, Nairn AC, Davis RJ, Yamamoto T, Kinjo M, Taru H, Suzuki T (2014) Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport. Mol Biol Cell 25:3569–3580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the β-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283:29621–29625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  • Hancock WO (2014) Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol 9:615–628

    Article  Google Scholar 

  • Hata S, Fujishige S, Araki Y, Kato N, Araseki M, Nishimura M, Hartmann D, Saftig P, Fahrenholz F, Taniguchi M, Urakami K, Akatsu H, Martins RN, Yamamoto K, Maeda M, Yamamoto T, Nakaya T, Gandy S, Suzuki T (2009) Alcadein cleavages by APP α- and γ-secretases generate small peptides p3-Alcs indicating Alzheimer disease-related γ-secretase dysfunction. J Biol Chem 284:36024–36033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hata S, Fujishige S, Araki Y, Taniguchi M, Urakami K, Peskind E, Akatsu H, Araseki M, Yamamoto K, Martins NR, Maeda M, Nishimura M, Levey A, Chung KA, Montine T, Leverenz J, Fagan A, Goate A, Bateman R, Holtzman DM, Yamamoto T, Nakaya T, Gandy S, Suzuki T (2011) Alternative γ-secretase processing of γ-secretase substrates in common forms of mild cognitive impairment and Alzheimer disease: evidence for γ-secretase dysfunction. Ann Neurol 69:1026–1031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hata S, Taniguchi M, Piao Y, Ikeuchi T, Fagan AM, Holzman DM, Bateman R, Sohrabi HR, Martins RN, Gandy S, Urakami K, Suzuki T, J-ADNI (2012) Multiple γ-secretase product peptides are coordinately increased in concentration in the CSF of a subpopulation of sporadic Alzheimer's disease subjects. Mol Neurodegener 7:16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi D, Barkus RV, Pilling AD, Gassman A, Saxton WM (2005) APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr Biol 15:2137–2141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iijima K, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, Greengard P, Kirino Y, Nairn AC, Suzuki T (2000) Neuron-specific phosphorylation of Alzheimer’s b-amyloid precursor protein by cyclin-dependent kinase 5. J Neurochem 75:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Kakuda N, Shoji M, Arai H, Furukawa K, Ikeuchi T, Akazawa K, Takami M, Hatsuta H, Murayama S, Hashimoto Y, Miyajima M, Arai H, Nagashima Y, Yamaguchi H, Kuwano R, Nagaike K, Ihara Y, for J-ADNI (2012) Altered γ-secretase activity in mild cognitive impairment and Alzheimer’s disease. EMBO Mol Med 4:344–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-1. Neuron 28:449–459

    Article  CAS  PubMed  Google Scholar 

  • Kamogawa K, Kohara K, Tabara Y, Takita R, Miki T, Konno T, Hata S, Suzuki T (2012) Utility of plasma levels of soluble p3-Alcadeinα as a biomarker for sporadic Alzheimer’s disease. J Alzheimers Dis 31:421–428

    CAS  PubMed  Google Scholar 

  • Kanekiyo T, Xu H, Bu G (2014) ApoE and Ab in Alzheimer’s disease: accidental encounters or partners. Neuron 81:740–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawano T, Araseki M, Araki Y, Kinjo M, Yamamoto T, Suzuki T (2012) A small peptide sequence is sufficient for initiating kinesin-1 activation through part of TPR region of KLC1. Traffic 13:834–848

    Article  CAS  PubMed  Google Scholar 

  • Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, Karhunen PJ (2009) Appolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 65:650–657

    Article  CAS  PubMed  Google Scholar 

  • Konecta A, Frischknecht R, Kinter J, Ludwig A, Steuble M, Meskenaite V, Indermuhle M, Engel M, Cen C, Mateos JM, Sreit P, Sonderegger P (2006) Calsyntenin-1 docks vescular cargo to kinesin-1. Mol Biol Cell 17:3651–3663

    Article  Google Scholar 

  • Konnno T, Hata S, Hamada Y, Horikoshi Y, Nakaya T, Saito Y, Yamamoto T, Yamamoto T, Maeda M, Gandy S, Akatsu H, Suzuki T, for J-ADNI (2011) Coordinate increase of γ-secretase reaction products in the plasma of some female Japanese sporadic Alzheimer’s disease patients: quantitative analysis with a new ELISA system. Mol Neurodegener 6:76

    Article  Google Scholar 

  • Matsushima T, Saito Y, Elliott JI, Iijim-Ando K, Nishimura M, Kimura N, Hata S, Yamamoto T, Nakaya T, Suzuki T (2012) Membrane-microdomain localization of amyloid β-precursor protein (APP) C-terminal fragments is regulated by phosphorylation of the cytoplasmic Thr668 residue. J Biol Chem 287:19715–19724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mawuenyaga KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  Google Scholar 

  • Millecamps S, Julien J-P (2013) Axonal transport deficits and neurodegenerative disease. Nat Rev Neurosci 14:161–176

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Heraud C, Nicaise C, Suain V, Brion JP (2012) Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer’s disease: implications for axoplasmic transport. Acta Neuropathol 123:71–84

    Article  CAS  PubMed  Google Scholar 

  • Morihara T, Hayashi N, Yokokoji M, Akatsu H, Silverman MA, Kimura N, Sato M, Saito Y, Suzuki T, Yanagida K, Kodama TS, Tanaka T, Okochi M, Tagami S, Kazui H, Kubo T, Hashimoto R, Itoh N, Nishitomi K, Yamaguchi-Kabata Y, Tsunoda T, Takamura H, Katayama T, Kimura R, Kamino K, Hashizume Y, Takeda M (2014) Transcriptome analysis of distinct mouse strains reveals kinesin light chain-1 splicing as an amyloid-β accumulation modifier. Proc Natl Acad Sci USA 111:2638–2643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oikawa N, Kimura N, Yanagisawa K (2010) Alzheimer-type tau pathology in advanced age nonhuman primate brains harboring substantial amyloid deposition. Brain Res 1315:137–149

    Article  CAS  PubMed  Google Scholar 

  • Omori C, Kaneko M, Nakajima E, Akatsu H, Waragai M, Maeda M, Morishima-Kawashima M, Saito Y, Nakaya T, Taru H, Yamamoto T, Asada T, Hata S, Suzuki T, for J-ADNI (2014) Increased levels of plasma p3-Alcα35, a major fragment of alcaseinα by γ-secretase cleavage, in Alzheimer disease. J Alzheimers Dis 39:861–870

    CAS  PubMed  Google Scholar 

  • Piao Y, Kimura A, Urano S, Saito Y, Taru H, Yamamoto T, Hata S, Suzuki T (2013) Mechanism of intramembrane cleavage of Alcadeins by γ-secretase. PLoS One 8:e62431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramelot TA, Nicholson LK (2001) Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J Mol Biol 307:871–884

    Article  CAS  PubMed  Google Scholar 

  • Rhinn H, Fujita R, Qiang L, Cheng R, Lee JH, Abeliovich A (2013) Integrative genomics identifies APOEe4 effectors in Alzheimer’s disease. Nature 500:45–50

    Article  CAS  PubMed  Google Scholar 

  • Riddle DR, Christie G, Hussain I, Dingwall C (2001) Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 11:1288–1293

    Article  Google Scholar 

  • Saito Y, Sano Y, Vassar R, Gandy S, Nakaya T, Yamamoto T, Suzuki T (2008) X11 proteins regulate the translocation of amyloid β-protein precursor (APP) into detergent-resistant membrane and suppress the amyloidogenic cleavage of APP by β-site-cleaving enzyme in brain. J Biol Chem 283:35763–35771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stokin GG, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficities early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Nakaya T (2008) Regulation of amyloid β-protein precursor by phosphorylation and protein interactions. J Biol Chem 283:29633–29637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki T, Araki Y, Yamamoto T, Nakaya T (2006) Trafficking of Alzheimer’s disease-related membrane proteins and its participation in disease pathogenesis. J Biochem 139:949–955

    Article  CAS  PubMed  Google Scholar 

  • Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y (2009) Gamma-secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29:13042–13052

    Article  CAS  PubMed  Google Scholar 

  • Takei N, Sobu Y, Kimura A, Urano S, Piao Y, Araki Y, Taru H, Yamamoto T, Hata S, Nakaya T, Suzuki T (2015) Cytoplasmic fragment of Alcadeinα generated by regulated intramembrane proteolysis enhances APP transport into the late-secretory pathway and facilitates APP cleavage. J Biol Chem 290:987–995

    Article  CAS  PubMed  Google Scholar 

  • Taru H, Suzuki T (2009) Regulation of physiological function and metabolism of AβPP by AβPP binding proteins. J Alzheimer Dis 18:253–265

    CAS  Google Scholar 

  • Taru T, Iijima K, Hase M, Kirino Y, Yagi Y, Suzuki T (2002) Interaction of Alzheimer’s β-amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J Biol Chem 277:20070–20078

    Article  CAS  PubMed  Google Scholar 

  • Thies W, Bleiler L, Alzheimer’s Association (2013) Alzheimer’s disease facts and figures. Alzheimers Dement 9:208–245

    Article  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777

    Article  CAS  PubMed  Google Scholar 

  • Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152:959–970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogt L, Schrimpf SP, Meskenaite V, Frischknecht R, Kinter J, Leone DP, Ziegler U, Sonderegger P (2001) Calsyntenin-1, a proteolytically processed postsynaptic membrane protein with a cytoplasmic calcium-binding domain. Mol Cell Neurosci 17:151–166

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization and Alzheimer’s Disease International (2012) Mental health. Dementia: a public health priority. WHO Press, Geneva. ISBN:978 92 4 156445 8

    Google Scholar 

  • Yagi Y, Tomita S, Nakamura M, Suzuki T (2000) Overexpression of human amyloid precursor protein in Drosophila. Mol Cell Biol Res Commun 4:43–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Nozomu Mori (Nagasaki University) and Prof. Inhee Mook-Jung (Seoul National University) for giving us this opportunity to write this review. This work was supported in part by Grant-in-Aid for Scientific Research 26293010 (to T.S.) and 24790062 (to S.H.) from MEXT, Japan, and in part by the Asian Core Program of the JSPS, Japan. S.H. was supported by the Bilateral Joint Research Projects of the JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, T., Kimura, A., Chiba, K., Nakaya, T., Hata, S. (2015). Brain Aging as a Cause of Alzheimer’s Disease. In: Mori, N., Mook-Jung, I. (eds) Aging Mechanisms. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55763-0_18

Download citation

Publish with us

Policies and ethics