Skip to main content

α-Klotho in Health and Diseases

  • Chapter
Book cover Aging Mechanisms

Abstract

α-klotho -(α-kl) was first identified as an aging gene and later shown to be a regulator of calcium and phosphate homeostasis. α-kl is predominantly expressed in tissues that are involved in mineral homeostasis, and it encodes a 130-kDa type I glycoprotein. α-Kl was first predicted to localize to the cell surface. However, large amounts of α-Kl proteins have been detected in the intra-cellular space. In addition, the extra-cellular domain is cleaved, and secreted forms have been identified in the blood, CSF and urine. These findings suggest that α-Kl has several functions that depend on its intracellular, membrane, and extra-cellular secreted forms. In fact, the intra-cellular form of α-Kl activates Ca2+ transport from the blood to the CSF in the choroid plexus and Ca2+ re-absorption in the kidney and regulates PTH secretion in parathyroid glands by controlling the trafficking of the Na+-K+-ATPase complex to plasma membrane. On the membrane, α-Kl forms a ternary complex with FGF23 and FGFR1 and negatively regulates 1, 25(OH)2D synthesis and phosphate re-absorption in the kidney. As a down-steam event of hypervitaminosis D and hyperphosphatemia, Calpain-1 is greatly activated and is responsible for many phenotypes. Although a growing number of papers have reported the biological and clinical roles of the secreted form of α-Kl, the functions of the secreted form of α-Kl are poorly understood.

The extracellular domain of α-Kl contains two internal repeats that are homologous to family 1 β-glycosidase. However, critical amino acid residues that are essential for enzyme action are replaced. Nonetheless, α-Kl was found to exhibit a subtle but specific β-glucuronidase activity. This finding suggests that the function of α-Kl may be twofold; it may act as an enzyme or as a glycoside-binding protein. The analyses of the sugar chains of α-Kl binding proteins and revealed that α-Kl functions as a glycoside-binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC, van Leeuwen JP, Bindels RJ, Hoenderop JG (2009) Klotho prevents renal calcium loss. J Am Soc Nephrol 20:2371–2379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharyya N, Chong WH, Gafni RI, Collins MT (2012) Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol Metab 23:610–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  • Bringhurst FR, Demay MB, Kronenberg H (2011) Hormones and disorders of mineral metabolism. In: Bringhurst FR, Demay MB, Kronenberg HM (eds) William’s textbook of endocrinology, 12th edn. Elsevier Saunders, Philadelphia, pp 1237–1304

    Chapter  Google Scholar 

  • Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O et al (1993) Cloning and characterization of an extracellular Ca2+ sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  • Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262:1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Calleja-Agius J, Muscat-Baron Y, Brincat MP (2007) Skin ageing. Menopause Int 13:60–64

    CAS  PubMed  Google Scholar 

  • Campbell RL, Davies PL (2012) Structure-function relationships in calpains. Biochem J 447:335–351

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Kuro-o M, Razzaque MS (2011) Molecular regulation of phosphate metabolism by fibroblast growth factor-23-klotho system. Adv Chronic Kidney Dis 18:91–97

    Article  PubMed Central  PubMed  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  PubMed  Google Scholar 

  • Drüeke TB, Prié D (2007) Klotho spins the thread of life – what does klotho do to the receptors of fibroblast growth factor-23 (FGF23)? Nephrol Dial Transplant 22:1524–1526

    Article  PubMed  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  • Gopalan V, Pastuszyn A, Galey WR Jr, Glew RH (1992) Exolytic hydrolysis of toxic plant glucosides by guinea pig liver cytosolic beta-glucosidase. J Biol Chem 267:14027–14032

    CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    Article  PubMed Central  PubMed  Google Scholar 

  • Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107

    Article  CAS  PubMed  Google Scholar 

  • Hoenderop JGJ, Nilius B, Bindels RJM (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  CAS  PubMed  Google Scholar 

  • Imura A, Iwano A, Kita N, Thoyama O, Fujimori T, Nabeshima Y (2004) Secreted klotho protein in sera and CSF: implication for post-translational cleavage in release of klotho protein from cell membrane. FEBS Lett 565:143–147

    Article  CAS  PubMed  Google Scholar 

  • Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabehsima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabehsima Y (2007) Alpha-klotho as a regulator of calcium homeostasis. Science 316:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y (2005) Impaired negative feedback suppression of bile acid synthesis in mice lacking betaklotho. J Clin Invest 115:2202–2208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569

    Article  CAS  PubMed  Google Scholar 

  • Kendrick J, Chonchol M (2011) The role of phosphorus in the development and progression of vascular calcification. Am J Kidney Dis 58:826–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HR, Nam BY, Kim DW, Kang MW, Han JH, Lee MJ, Shin DH, Doh FM, Koo HM, Ko KI, Kim CH, Oh HJ, Yoo TH, Kang SW, Han DS, Han SH (2013) Circulating α-klotho levels in CKD and relationship to progression. Am J Kidney Dis 61:899–909

    Article  CAS  PubMed  Google Scholar 

  • Koh N, Fujimori T, Tamori A, Nishiguchi S, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kuroki T, Nabeshima Y (2001) Severely reduced expression of klotho gene in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020

    Article  CAS  PubMed  Google Scholar 

  • Komaba H, Fukagawa M (2012) The role of FGF23 in CKD – with or without klotho. Nat Rev Nephrol 8:484–490

    Article  CAS  PubMed  Google Scholar 

  • Kovesdy CP, Quarles LD (2013) Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant 28(9):2228–2236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuizon BD, Salusky IB (1999) Growth retardation in children with chronic renal failure. J Bone Miner Res 14:1680–1690

    Article  CAS  PubMed  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Ryozo N, Nabeshima Y (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H, Yamamoto M, Clark AJD, Pastor JV, Nandi A, Grunani P et al (2005) Suppression of aging in mice by the hormone klotho. Science 309:1829–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LaMarco KL, Glew RH (1986) Hydrolysis of a naturally occurring beta-glucoside by a broad-specificity beta-glucosidase from liver. Biochem J 237:469–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364

    Article  CAS  PubMed  Google Scholar 

  • London GM, Drueke TB (1997) Atherosclerosis and arteriosclerosis in chronic renal failure. Kidney Int 51:1678–1695

    Article  CAS  PubMed  Google Scholar 

  • Lytton J (2007) Na./Ca. exchangers: three mammalian gene families control C2+ transport. Biochem J 406:365–382

    Article  CAS  PubMed  Google Scholar 

  • Manya H, Fujimori T, Nabeshima Y, Endo T (2002) Klotho protein deficiency leads to overactivation of (Mu)-calpain. J Biol Chem 277:35503–35508

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Tustison KS, Sugatani T, Chaudhary LR, Rifas L, Hruska KA (2008) The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol 19:1092–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCarter JD, Withers SG (1994) Curr Opin Struct Biol 4:885–892

    Article  CAS  PubMed  Google Scholar 

  • Mellgren RL, Huang X (2007) Fetuin a stabilizes μ-calpain and facilitates plasma membrane repair. J Biol Chem 282:35868–35877

    Article  CAS  PubMed  Google Scholar 

  • Milliner DS, Zinsmeister AR, Lieberman E, Landing B (1990) Soft tissue calcification in pediatric patients with end-stage renal disease. Kidney Int 38:931–936

    Article  CAS  PubMed  Google Scholar 

  • Moe SM, Reslerova M, Ketteler M, O’neill K, Duan D, Koczman J, Westenfeld R, Jahnen-Dechent W, Chen NX (2005) Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:2295–2304

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima Y (2009) Discovery of α-Klotho unveiled new insights into calcium and phosphate homeostasis. Proc Jpn Acad Ser B 85:125–141

    Article  CAS  Google Scholar 

  • Nabeshima Y, Washida M, Tamura M, Maeno A, Ohnishi M, Shiroishi T, Imura A, Razzaque MS, Nabeshima Y (2014) Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes. Sci Rep 4:5847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakatani T, Sarraj B, Ohnishi M, Densmore MJ, Taguchi T, Goetz R, Mohammadi M, Lanske B, Razzaque MS (2009) In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J 23:433–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J 24:3562–3571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohnishi M, Nakatani T, Lanske B, Razzaque MS (2006) Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1α-hydroxylase. Kidney Int 75:1166–1172

    Article  Google Scholar 

  • Parfitt AM, Kleerekoper M (1980) The divalent ion homeostatic system: physiology and metabolism of calcium, phosphorus, magnesium, and bone. In: Maxwell MH, Kleeman CR (eds) Clinical disorders of fluid and electrolyte metabolism, 3rd edn. McGraw-Hill, New York, pp 269–398

    Google Scholar 

  • Proudfoot D, Shanahan CM (2006) Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology 11:455–461

    Article  CAS  PubMed  Google Scholar 

  • Quarles LD (2012) Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res 318:1040–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5:611–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B (2006) Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D mediated process. FASEB J 20:720–722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rostand SG, Drueke TB (1999) Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure. Kidney Int 56:383–392

    Article  CAS  PubMed  Google Scholar 

  • Rye CS, Withers SG (2000) Curr Opin Chem Biol 4:573–580

    Article  CAS  PubMed  Google Scholar 

  • Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in atherosclerotic calcification. Nat Rev Cardiol 7:528–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato A, Hirai T, Imura A, Kita A, Iwano A, Muro S, Nabeshima Y, Suki B, Mishima M (2007) Morphological mechanism of the development of pulmonary emphysema in klotho mice. Proc Natl Acad Sci U S A 104:2361–2365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seiler S, Wen M, Roth HJ, Fehrenz M, Flügge F, Herath E, Weihrauch A, Fliser D, Heine GH (2013) Plasma klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int 83:121–128

    Article  CAS  PubMed  Google Scholar 

  • Sergeev IN (2005) Calcium signaling in cancer and vitamin D. J Steroid Biochem Mol Biol 97:145–151

    Article  CAS  PubMed  Google Scholar 

  • Sergeev IN (2009) 1,25-Dihydroxyvitamin D3 induces Ca2+-mediated apoptosis in adipocytes via activation of calpain and caspase-12. Biochem Biophys Res Commun 384:18–21

    Article  CAS  PubMed  Google Scholar 

  • Shao JS, Cheng SL, Sadhu J, Towler DA (2010) Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55:579–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skou JC (1988) The Na., K.-pump. Methods Enzymol 156:1–25

    Article  CAS  PubMed  Google Scholar 

  • Stubbs JR, Liu S, Tang W, Zhou J, Wang Y, Yao X, Quarles LD (2007) Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol 18:2116–2124

    Article  CAS  PubMed  Google Scholar 

  • Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, Lee J-K, Kamiya K, Kitaichi K, Yamamoto K, Ito M, Kondo T, Iino S, Inden Y, Hirai M, Murohara T, Kodama I, Nabeshima Y (2004) Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109:1776–1782

    Article  PubMed  Google Scholar 

  • Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y (2004) Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J Biol Chem 273:9777–9784

    Article  Google Scholar 

  • Tomiyama K, Maeda R, Urakawa I, Yamazaki Y, Tanaka T, Ito S, Nabeshima Y, Tomita T, Odori S, Hosoda K, Nakao K, Imura A, Nabeshima Y (2010) Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc Natl Acad Sci U S A 107:1666–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y (2003) Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 17:2393–2403

    Article  CAS  PubMed  Google Scholar 

  • Tsuruoka S, Nishiki K, Ioka T, Ando H, Saito Y, Kurabayashi M, Nagai R, Fujimura A (2006) Defect in parathyroid-hormone-induced luminal calcium absorption in connecting tubules of klotho mice. Nephrol Dial Transplant 21:2762–2767

    Article  CAS  PubMed  Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  • Urena P, De Vernejoul MC (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55:2141–2156

    Article  CAS  PubMed  Google Scholar 

  • Wallin R, Wajih N, Greenwood GT, Sane DC (2001) Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev 21:274–301

    Article  CAS  PubMed  Google Scholar 

  • Wang KK, Yuen PW (1994) Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci 15:412–419

    Article  CAS  PubMed  Google Scholar 

  • Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y (2010) Establishment of sandwich ELISA for soluble alpha-klotho measurement: age-dependent change of soluble alpha-klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujimori T, Nabeshima Y (2002) Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D3 in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 143:683–689

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-ichi Nabeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nabeshima, Yi. (2015). α-Klotho in Health and Diseases. In: Mori, N., Mook-Jung, I. (eds) Aging Mechanisms. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55763-0_10

Download citation

Publish with us

Policies and ethics