Skip to main content

Abstract

The health effects of silver nanoparticles (AgNPs) have not been well investigated, despite AgNPs now being widely used in consumer products. We introduce living environment, analysis, metabolic behavior, toxicity, and human health effect of AgNPs in comparison to silver nitrate (AgNO3). The American Conference of Governmental Industrial Hygienists (ACGIH) has established separate threshold limit values (TLV) for metallic silver (0.1 mg/m3) and soluble compounds of silver (0.01 mg/m3). Argyria and argyrosis are chronic disorders of skin microvessels and eyes in humans, and these disorders reportedly develop following extended oral and inhalational exposure to Ag. In mammals, AgNO3 and AgNPs increased the number of the total cells, neutrophils, and pro-inflammatory cytokine production “IL-1β,” and these were distributed in the lung, kidney, and liver. The amount of Ag in the metallothionein (MT)-bound form was related in cellular behavior and toxicity of AgNPs and AgNO3. The cytotoxic effect of AgNPs is a simple function of neither the number nor total surface area. Although the effect may vary among the cell types and the culture conditions, AgNPs were transported to lysosomes and only gradually dissolved in mammals, causing milder inflammatory stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, et al. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci. 2015;143(1):136–46. doi:10.1093/toxsci/kfu217.

    Article  CAS  PubMed  Google Scholar 

  2. Ahlberg S, Antonopulos A, Diendorf J, Dringen R, Epple M, Flock R, et al. PVP-coated, negatively charged silver nanoparticles: a multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotechnol. 2014;5:1944–65. doi:10.3762/bjnano.5.205.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Aldossari AA, Shannahan JH, Podila R, Brown JM. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro. 2015;29(1):195–203. doi:10.1016/j.tiv.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  4. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11. doi:10.1186/1743-8977-11-11.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008;233(3):404–10. 10.1016/j.taap.2008.09.015 S0041-008X(08)00388-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  6. Theodorou IG, Ryan MP, Tetley TD, Porter AE. Inhalation of silver nanomaterials-seeing the risks. Int J Mol Sci. 2014;15(12):23936–74. doi:10.3390/ijms151223936.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;33(2):139–48. doi:10.1016/j.burns.2006.06.010.

    Article  PubMed  Google Scholar 

  8. Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34. 93928 [pii] 10.1159/000093928.

    Article  CAS  PubMed  Google Scholar 

  9. Zuo Y, Chen G, Zeng G, Li Z, Yan M, Chen A, et al. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions. J Hazard Mater. 2015;285:236–44. doi:10.1016/j.jhazmat.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  10. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101(2):239–53. kfm240 [pii] 10.1093/toxsci/kfm240.

    Article  CAS  PubMed  Google Scholar 

  11. Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190(2):156–62. doi:10.1016/j.toxlet.2009.07.009.

    Article  CAS  PubMed  Google Scholar 

  12. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc. 2013;135(4):1438–44. doi:10.1021/ja309812z.

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi Y, Miclaus T, Scavenius C, Kwiatkowska K, Sobota A, Engelmann P, et al. Species differences take shape at nanoparticles: protein corona made of the native repertoire assists cellular interaction. Environ Sci Technol. 2013;47(24):14367–75. doi:10.1021/es404132w.

    Article  CAS  PubMed  Google Scholar 

  14. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C. 2008;112(15):5825–34. doi:10.1021/Jp711616v.

    Article  CAS  Google Scholar 

  15. Miyayama T, Arai Y, Suzuki N, Hirano S. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate. Toxicology. 2013;305:20–9. 10.1016/j.tox.2013.01.004 S0300-483X(13)00009-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  16. Miyayama T, Arai Y, Hirano S. Environmental exposure to silver and its health effects. Nihon Eiseigaku Zasshi. 2012;67(3):383–9. doi:DN/JST.JSTAGE/jjh/67.383 [pii].

    Article  CAS  PubMed  Google Scholar 

  17. Drake PL, Hazelwood KJ. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg. 2005;49(7):575–85. mei019 [pii] 10.1093/annhyg/mei019.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki KT. Simultaneous speciation of endogenous and exogenous elements by HPLC/ICP-MS with enriched stable isotopes. Tohoku J Exp Med. 1996;178(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  19. Miyayama T, Ogra Y, Suzuki KT. Separation of metallothionein isoforms extracted from isoform-specific knockdown cells on two-dimensional micro high-performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. J Anal At Spectrom. 2007;22(2):179–82. doi:10.1039/B613662c.

    Article  CAS  Google Scholar 

  20. Arai Y, Miyayama T, Hirano S. Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages. Toxicology. 2014;328C:84–92. doi:10.1016/j.tox.2014.12.014.

    Google Scholar 

  21. Jimenez-Lamana J, Laborda F, Bolea E, Abad-Alvaro I, Castillo JR, Bianga J, et al. An insight into silver nanoparticles bioavailability in rats. Metallomics. 2014;6(12):2242–9. doi:10.1039/c4mt00200h.

    Article  CAS  PubMed  Google Scholar 

  22. Miyayama T, Arai Y, Suzuki N, Hirano S. Cellular distribution and behavior of metallothionein in mammalian cells following exposure to silver nanoparticles and silver ions. Yakugaku Zasshi J Pharm Soc Jpn. 2014;134(6):723–9.

    Article  CAS  Google Scholar 

  23. Haq F, Mahoney M, Koropatnick J. Signaling events for metallothionein induction. Mutat Res. 2003;533(1–2):211–26. doi:S0027510703002185.

    Article  CAS  PubMed  Google Scholar 

  24. Nordberg M, Nordberg GF. Toxicological aspects of metallothionein. Cell Mol Biol (Noisy-le-Grand). 2000;46(2):451–63.

    CAS  Google Scholar 

  25. Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000;130(5S Suppl):1455S–8.

    CAS  PubMed  Google Scholar 

  26. Kagi JH, Schaffer A. Biochemistry of metallothionein. Biochemistry. 1988;27(23):8509–15.

    Article  CAS  PubMed  Google Scholar 

  27. Fu Z, Guo J, Jing L, Li R, Zhang T, Peng S. Enhanced toxicity and ROS generation by doxorubicin in primary cultures of cardiomyocytes from neonatal metallothionein-I/II null mice. Toxicol In Vitro. 2010;24(6):1584–91. 10.1016/j.tiv.2010.06.009 S0887-2333(10)00151-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  28. Lansdown AB. Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Regen. 2002;10(3):130–2.

    Article  PubMed  Google Scholar 

  29. Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, et al. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett. 2009;187(1):15–21. doi:10.1016/j.toxlet.2009.01.020.

    Article  CAS  PubMed  Google Scholar 

  30. Pfurtscheller K, Petnehazy T, Goessler W, Bubalo V, Kamolz LP, Trop M. Transdermal uptake and organ distribution of silver from two different wound dressings in rats after a burn trauma. Wound Repair Regen. 2014;22(5):654–9. doi:10.1111/wrr.12209.

    PubMed  Google Scholar 

  31. Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care. 2011;20(11):543–9.

    Article  CAS  PubMed  Google Scholar 

  32. Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011;8:27. doi:10.1186/1743-8977-8-27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 2009;23(6):1076–84. S0887-2333(09)00129-5 [pii] 10.1016/j.tiv.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  34. Park EJ, Choi K, Park K. Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharm Res. 2011;34(2):299–307. doi:10.1007/s12272-011-0216-y.

    Article  CAS  PubMed  Google Scholar 

  35. Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108(2):452–61. kfn246 [pii] 10.1093/toxsci/kfn246.

    Article  CAS  PubMed  Google Scholar 

  36. Baldi C, Minoia C, Di Nucci A, Capodaglio E, Manzo L. Effects of silver in isolated rat hepatocytes. Toxicol Lett. 1988;41(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  37. Hidalgo E, DomÚnguez C. Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett. 1998;98(3):169–79.

    Article  CAS  PubMed  Google Scholar 

  38. Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010;44(21):8337–42. doi:10.1021/es1020668.

    Article  CAS  PubMed  Google Scholar 

  39. Jansson G, Harms-Ringdahl M. Stimulating effects of mercuric- and silver ions on the superoxide anion production in human polymorphonuclear leukocytes. Free Radic Res Commun. 1993;18(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  40. Powers CM, Wrench N, Ryde IT, Smith AM, Seidler FJ, Slotkin TA. Silver impairs neurodevelopment: studies in PC12 cells. Environ Health Perspect. 2010;118(1):73–9. doi:10.1289/ehp.0901149.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, K­ller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater. 2011;7(1):347–54. doi:10.1016/j.actbio.2010.08.003.

    Article  CAS  PubMed  Google Scholar 

  42. Arora S, Jain J, Rajwade JM, Paknikar KM. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol. 2009;236(3):310–8. 10.1016/j.taap.2009.02.020 S0041-008X(09)00087-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  43. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19. doi:10.1021/jp712087m.

    Article  CAS  PubMed  Google Scholar 

  44. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19(7):975–83. S0887-2333(05)00126-8 [pii] 10.1016/j.tiv.2005.06.034.

    Article  CAS  PubMed  Google Scholar 

  45. Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J Biochem. 2003;134(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  46. Oberdorster G, Ferin J, Finkelstein J, Soderholm S. Thermal degradation events as health hazards: particle vs gas phase effects, mechanistic studies with particles. Acta Astronaut. 1992;27:251–6.

    Article  CAS  PubMed  Google Scholar 

  47. Sandberg WJ, Lag M, Holme JA, Friede B, Gualtieri M, Kruszewski M, et al. Comparison of non-crystalline silica nanoparticles in IL-1beta release from macrophages. Part Fibre Toxicol. 2012;9:32. doi:10.1186/1743-8977-9-32-1743-8977-9-32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Shelley WB, Shelley ED, Burmeister V. Argyria: the intradermal “photograph,” a manifestation of passive photosensitivity. J Am Acad Dermatol. 1987;16(1 Pt 2):211–7.

    Article  CAS  PubMed  Google Scholar 

  49. Gulbranson SH, Hud JA, Hansen RC. Argyria following the use of dietary supplements containing colloidal silver protein. Cutis. 2000;66(5):373–4.

    CAS  PubMed  Google Scholar 

  50. Stafeeva K, Erlanger M, Velez-Montoya R, Olson JL. Ocular argyrosis secondary to long-term ingestion of silver nitrate salts. Clin Ophthalmol. 2012;6:2033–6. doi:10.2147/OPTH.S37898 opth-6-2033.

    PubMed Central  PubMed  Google Scholar 

  51. Rosenman KD, Moss A, Kon S. Argyria: clinical implications of exposure to silver nitrate and silver oxide. J Occup Med. 1979;21(6):430–5.

    CAS  PubMed  Google Scholar 

  52. Moss AP, Sugar A, Hargett NA, Atkin A, Wolkstein M, Rosenman KD. The ocular manifestations and functional effects of occupational argyrosis. Arch Ophthalmol. 1979;97(5):906–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lansdown AB. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharm Sci. 2010;2010:910686. doi:10.1155/2010/910686.

    Google Scholar 

  54. Tomi NS, Kranke B, Aberer W. A silver man. Lancet. 2004;363(9408):532.

    Article  PubMed  Google Scholar 

  55. Mayr M, Kim MJ, Wanner D, Helmut H, Schroeder J, Mihatsch MJ. Argyria and decreased kidney function: are silver compounds toxic to the kidney? Am J Kidney Dis. 2009;53(5):890–4. doi:10.1053/j.ajkd.2008.08.028.

    Article  PubMed  Google Scholar 

  56. Pala G, Fronterre A, Scafa F, Scelsi M, Ceccuzzi R, Gentile E, et al. Ocular argyrosis in a silver craftsman. J Occup Health. 2008;50(6):521–4. doi:JST.JSTAGE/joh/N8001 [pii].

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamitsu Miyayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Miyayama, T., Arai, Y., Hirano, S. (2016). Health Effects of Silver Nanoparticles and Silver Ions. In: Otsuki, T., Yoshioka, Y., Holian, A. (eds) Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55732-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55732-6_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55731-9

  • Online ISBN: 978-4-431-55732-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics