Skip to main content

Bone as an Endocrine Organ: Diabetic Bone Disease as a Cause of Endocrine Disorder via Osteocalcin, FGF23 Secreted from Osteocyte/Osteoblast

  • Chapter
  • First Online:

Abstract

Endocrine effects occur when organs secrete humoral physiologically active substances into the blood or other bodily fluids, and these active substances exert their physiological activities in target tissues. Fibroblast growth factor (FGF) 23, which is secreted by osteocytes, acts on the renal tubule and is involved in phosphorus metabolism. Osteocalcin, which is secreted by osteoblasts, acts on pancreatic β-cells and adipocytes and plays a role in insulin secretion and glycometabolism, in addition to its conventional role as a bone matrix protein. Thus, FGF23 and osteocalcin secreted from bone tissues function as endocrine hormones. Osteocyte and osteoblast functions are decreased in diabetes. Consequently, the secretion of FGF23 and osteocalcin is hindered. The decreased function of FGF23 causes hyperphosphatemia and leads to the progression of arteriosclerosis. The decreased function of osteocalcin results in decreased insulin secretion and increased insulin resistance. In this article, we describe the role of bone as an endocrine organ and its association with diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mirams M, Robinson BG, Mason RS, Nelson AE (2004) Bone as a source of FGF23: regulation by phosphate? Bone 35(5):1192–1199. doi:10.1016/j.bone.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  2. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 291(1):E38–E49. doi:10.1152/ajpendo.00008.2006

    Article  CAS  PubMed  Google Scholar 

  3. Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, Otani S (1998) Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22(1):17–23

    Article  CAS  PubMed  Google Scholar 

  4. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40(2):345–353. doi:10.1016/j.bone.2006.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzuto R (2008) High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A 105(4):1226–1231. doi:10.1073/pnas.0711402105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT (2006) Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 290(4):C1139–C1146. doi:10.1152/ajpcell.00415.2005

    Article  CAS  PubMed  Google Scholar 

  7. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774. doi:10.1038/nature05315

    Article  CAS  PubMed  Google Scholar 

  8. Cheng MF, Chen LJ, Wang MC, Hsu CT, Cheng JT (2014) Decrease of FGF receptor (FGFR) and interstitial fibrosis in the kidney of streptozotocin-induced diabetic rats. Horm Metab Res 46(1):1–7. doi:10.1055/s-0033-1349090

    CAS  PubMed  Google Scholar 

  9. Quarles LD (2012) Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res 318(9):1040–1048. doi:10.1016/j.yexcr.2012.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoda K, Imanishi Y, Yoda M, Mishima T, Ichii M, Yamada S, Mori K, Emoto M, Inaba M (2012) Impaired response of FGF-23 to oral phosphate in patients with type 2 diabetes: a possible mechanism of atherosclerosis. J Clin Endocrinol Metab 97(11):E2036–E2043. doi:10.1210/jc.2012-2024

    Article  CAS  PubMed  Google Scholar 

  11. Muras K, Masajtis-Zagajewska A, Nowicki M (2013) Diabetes modifies effect of high-phosphate diet on fibroblast growth factor-23 in chronic kidney disease. J Clin Endocrinol Metab 98(12):E1901–E1908. doi:10.1210/jc.2013-2418

    Article  CAS  PubMed  Google Scholar 

  12. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79(12):1370–1378. doi:10.1038/ki.2011.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agarwal R, Duffin KL, Laska DA, Voelker JR, Breyer MD, Mitchell PG (2014) A prospective study of multiple protein biomarkers to predict progression in diabetic chronic kidney disease. Nephrol Dial Transplant 29(12):2293–2302. doi:10.1093/ndt/gfu255

    Article  PubMed  Google Scholar 

  14. Hashimoto H, Iijima K, Hashimoto M, Son BK, Ota H, Ogawa S, Eto M, Akishita M, Ouchi Y (2009) Validity and usefulness of aortic arch calcification in chest X-ray. J Atheroscler Thromb 16(3):256–264

    Article  PubMed  Google Scholar 

  15. Ishimura E, Okuno S, Kitatani K, Kim M, Shoji T, Nakatani T, Inaba M, Nishizawa Y (2002) Different risk factors for peripheral vascular calcification between diabetic and non-diabetic haemodialysis patients – importance of glycaemic control. Diabetologia 45(10):1446–1448. doi:10.1007/s00125-002-0920-8

    Article  CAS  PubMed  Google Scholar 

  16. Chen NX, Moe SM (2003) Arterial calcification in diabetes. Curr Diabetes Rep 3(1):28–32

    Article  Google Scholar 

  17. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, Chonchol M, Investigators H (2011) FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol: JASN 22(10):1913–1922. doi:10.1681/ASN.2010121224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359(6):584–592. doi:10.1056/NEJMoa0706130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim K, Lu TS, Molostvov G, Lee C, Lam FT, Zehnder D, Hsiao LL (2012) Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125(18):2243–2255. doi:10.1161/CIRCULATIONAHA.111.053405

    Article  CAS  PubMed  Google Scholar 

  20. Inaba M, Okuno S, Imanishi Y, Yamada S, Shioi A, Yamakawa T, Ishimura E, Nishizawa Y (2006) Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos Int 17(10):1506–1513. doi:10.1007/s00198-006-0154-6

    Article  CAS  PubMed  Google Scholar 

  21. Tamei N, Ogawa T, Ishida H, Ando Y, Nitta K (2011) Serum fibroblast growth factor-23 levels and progression of aortic arch calcification in non-diabetic patients on chronic hemodialysis. J Atheroscler Thromb 18(3):217–223

    Article  CAS  PubMed  Google Scholar 

  22. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142(2):309–319. doi:10.1016/j.cell.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308. doi:10.1016/j.cell.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Engelke JA, Hale JE, Suttie JW, Price PA (1991) Vitamin K-dependent carboxylase: utilization of decarboxylated bone Gla protein and matrix Gla protein as substrates. Biochim Biophys Acta 1078(1):31–34

    Article  CAS  PubMed  Google Scholar 

  25. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469. doi:10.1016/j.cell.2007.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2011) Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22(1):187–194. doi:10.1007/s00198-010-1184-7

    Article  CAS  PubMed  Google Scholar 

  27. Yeap BB, Alfonso H, Chubb SA, Gauci R, Byrnes E, Beilby JP, Ebeling PR, Handelsman DJ, Allan CA, Grossmann M, Norman PE, Flicker L (2015) Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab 100(1):63–71. doi:10.1210/jc.2014-3019

    Article  CAS  PubMed  Google Scholar 

  28. Okuno S, Ishimura E, Tsuboniwa N, Norimine K, Yamakawa K, Yamakawa T, Shoji S, Mori K, Nishizawa Y, Inaba M (2013) Significant inverse relationship between serum undercarboxylated osteocalcin and glycemic control in maintenance hemodialysis patients. Osteoporos Int 24(2):605–612. doi:10.1007/s00198-012-2003-0

    Article  CAS  PubMed  Google Scholar 

  29. Bullo M, Moreno-Navarrete JM, Fernandez-Real JM, Salas-Salvado J (2012) Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and beta cell function in elderly men at high cardiovascular risk. Am J Clin Nutr 95(1):249–255. doi:10.3945/ajcn.111.016642

    Article  CAS  PubMed  Google Scholar 

  30. Levinger I, Jerums G, Stepto NK, Parker L, Serpiello FR, McConell GK, Anderson M, Hare DL, Byrnes E, Ebeling PR, Seeman E (2014) The effect of acute exercise on undercarboxylated osteocalcin and insulin sensitivity in obese men. J Bone Mineral Res 29(12):2571–2576. doi:10.1002/jbmr.2285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Yoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yoda, K. (2016). Bone as an Endocrine Organ: Diabetic Bone Disease as a Cause of Endocrine Disorder via Osteocalcin, FGF23 Secreted from Osteocyte/Osteoblast. In: Inaba, M. (eds) Musculoskeletal Disease Associated with Diabetes Mellitus. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55720-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55720-3_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55719-7

  • Online ISBN: 978-4-431-55720-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics