Skip to main content

Particle Engineering with CO2-Expanded Solvents: The DELOS Platform

  • Chapter

Abstract

Compressed fluids and especially CO2-expanded solvents (a mixed solvent composed of CO2 dissolved in an organic solvent) present unique properties for the eco-efficient production of active pharmaceutical ingredients (APIs) with an exceptional control of the operational variables that allow tuning the final properties of the active compounds. The pharmaceutical industry nowadays is facing several challenges, as nearly 40 % of the newly discovered drugs are poorly soluble in water and, hence, present low bioavailability. In addition, there is a huge necessity to move to a more environmentally friendly way of product manufacturing. Therefore, the use of compressed fluid-based technology is a promising solution for the pharmaceutical industry. This chapter provides a general overview covering the properties of compressed fluids (CF), the most used CF-based processes, and a more comprehensive summary of the application of CO2-expanded solvents for the tailored crystallization of active compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Zeinolabedini Hezave, F. Esmaeilzadeh, J. Disper. Sci. Technol. 33(8), 1106 (2012)

    Article  CAS  Google Scholar 

  2. D. Horn, J. Rieger, Angew. Chem. Int. Ed. 40(23), 4330 (2001)

    Article  CAS  Google Scholar 

  3. I. Pasquali, R. Bettini, F. Giordano, Eur. J. Pharm. Sci. 27(4), 299 (2006)

    Article  CAS  Google Scholar 

  4. B. Shekunov, P. Chattopadhyay, H. Tong, A. Chow, Pharm. Res. 24(2), 203 (2007)

    Article  Google Scholar 

  5. I. Pasquali, R. Bettini, F. Giordano, Adv. Drug Deliv. Rev. 60(3), 399 (2008)

    Article  CAS  Google Scholar 

  6. B.Y. Shekunov, P. Chattopadhyay, J. Seitzinger, R. Huff, Pharm. Res. 23(1), 196 (2006)

    Article  CAS  Google Scholar 

  7. C. Vemavarapu, M.J. Mollan, M. Lodaya, T.E. Needham, Int. J. Pharm. 292(1), 2 (2005)

    Article  CAS  Google Scholar 

  8. T. Yasuji, H. Takeuchi, Y. Kawashima, Adv. Drug Deliv. Rev. 60(3), 388 (2008)

    Article  Google Scholar 

  9. K. Moribe, Y. Tozuka, K. Yamamoto, Adv. Drug Deliv. Rev. 60(3), 328 (2008)

    Article  Google Scholar 

  10. B. Subramaniam, R.A. Rajewski, K. Snavely, J. Pharm. Sci. 86(8), 885 (1997)

    Article  Google Scholar 

  11. I. Pasquali, R. Bettini, Int. J. Pharm. 364(2), 176 (2008)

    Article  CAS  Google Scholar 

  12. M. Löffelmann, A. Mersmann, Chem. Eng. Sci. 57(20), 4301 (2002)

    Article  Google Scholar 

  13. N. Variankaval, A. Cote, M. Doherty, AICHE J. 54(7), 1682 (2008)

    Article  CAS  Google Scholar 

  14. E. Elizondo, J. Veciana, N. Ventosa, Nanomedicine 7(9), 1391 (2012)

    Article  CAS  Google Scholar 

  15. J. Jung, M. Perrut, J. Supercrit. Fluids 20(3), 179 (2001)

    Article  CAS  Google Scholar 

  16. M. Muntó, N. Ventosa, S. Sala, J. Veciana, J. Supercrit. Fluids 47(2), 147 (2008)

    Article  Google Scholar 

  17. M. Muntó, J. Gómez-Segura, J. Campo, M. Nakano, N. Ventosa, D. Ruiz-Molina, J. Veciana, J. Mater. Chem. 16(26), 2612 (2006)

    Article  Google Scholar 

  18. S. Sala, N. Ventosa, T. Tassaing, M. Cano, Y. Danten, M. Besnard, J. Veciana, ChemPhysChem 6(4), 587 (2005)

    Article  CAS  Google Scholar 

  19. M. Cano-Sarabia, N. Ventosa, S. Sala, C. Patino, R. Arranz, J. Veciana, Langmuir 24(6), 2433 (2008)

    Article  CAS  Google Scholar 

  20. M. Turk, P. Hils, B. Helfgen, K. Schaber, H. Martin, M. Wahl, J. Supercrit. Fluids 22(1), 75 (2002)

    Article  CAS  Google Scholar 

  21. C. Domingo, E. Berends, G. Van Rosmalen, J. Supercrit. Fluids 10(1), 39 (1997)

    Article  CAS  Google Scholar 

  22. S. Cihlar, M. Tuerk, K. Schaber, J. Aerosol Sci. 30(1), 355 (1999)

    Article  Google Scholar 

  23. S. Kim, S. Lee, H.-S. Kim, Y.-W. Lee, J. Lee, Comput. Aided Chem. Eng. 31, 135 (2012)

    Article  CAS  Google Scholar 

  24. J. Cai, Z. Zhou, X. Deng, Chin. J. Chem. Eng. 9(3), 258 (2001)

    CAS  Google Scholar 

  25. F. Fusaro, M. Mazzotti, G. Muhrer, Cryst. Growth Des. 4(5), 881 (2004)

    Article  CAS  Google Scholar 

  26. G. Muhrer, M. Mazzotti, M. Müller, J. Supercrit. Fluids 27(2), 195 (2003)

    Article  CAS  Google Scholar 

  27. D.J. Dixon, K.P. Johnston, R.A. Bodmeier, AICHE J. 39(1), 127 (1993)

    Article  CAS  Google Scholar 

  28. W. Schmitt, M. Salada, G. Shook, S. Speaker III, AICHE J. 41(11), 2476 (1995)

    Article  CAS  Google Scholar 

  29. S. Mawson, S. Kanakia, K. Johnston, J. Appl. Polym. Sci. 64(11), 2105 (1997)

    Article  CAS  Google Scholar 

  30. D. Perinelli, G. Bonacucina, M. Cespi, A. Naylor, M. Whitaker, G. Palmieri, G. Giorgioni, L. Casettari, Int. J. Pharmaceut. 468(1–2), 250 (2014)

    Article  CAS  Google Scholar 

  31. M. Fraile, A. Martin, H.,.D. Deodato, S. Rodriguez-Rojo, I. Nogueira, A. Simplicio, M. Cocero, C. Duarte, J. Supercrit. Fluids 81, 226 (2013)

    Article  CAS  Google Scholar 

  32. J. Li, H. Matos, E. De Azevedo, J. Supercrit. Fluids 32(1–3), 275 (2004)

    Article  Google Scholar 

  33. M. Brion, S. Jaspart, L. Perrone, G. Piel, B. Evrard, J. Supercrit. Fluids 51(1), 50 (2009)

    Article  CAS  Google Scholar 

  34. N. Ventosa, S. Sala, J. Veciana, J. Supercrit. Fluids 26(1), 33 (2003)

    Article  CAS  Google Scholar 

  35. N. Ventosa, S. Sala, J. Veciana, J. Torres, J. Llibre, Cryst. Growth Des. 1(4), 299 (2001)

    Article  CAS  Google Scholar 

  36. S. Sala, A. Cordoba, E. Moreno-Calvo, E. Elizondo, M. Munto, P.E. Rojas, M.A.A. Larrayoz, N. Ventosa, J. Veciana, Cryst. Growth Des. 12(4), 1717 (2012)

    Article  CAS  Google Scholar 

  37. S. Sala, E. Elizondo, E. Moreno, T. Calvet, M.A. Cuevas-Diarte, N. Ventosa, J. Veciana, Cryst. Growth Des. 10(3), 1226 (2010)

    Article  CAS  Google Scholar 

  38. Non‐ionic Surfactants: Polyoxyalkylene Block Copolymers. (Marcel Dekker, New York, 1996), vol 5, p. 185

    Google Scholar 

  39. S. Moghimi, A. Hunter, Trends Biotechnol. 18(10), 412 (2000)

    Article  CAS  Google Scholar 

  40. PhD Thesis, M. Muntó, Micro- i nanoestructuracio de materials moleculars funcionals amb fluits comprimits: Desenvolupament de metodologies de preparacio i estudis fisicoquoimics, UAB, 2009

    Google Scholar 

  41. E. Moreno-Calvo, F. Temelli, A. Cordoba, N. Masciocchi, J. Veciana, N. Ventosa, Cryst. Growth Des. 14(1), 58 (2014)

    Article  CAS  Google Scholar 

  42. F. Temelli, A. Cordoba, E. Elizondo, M. Cano-Sarabia, J. Veciana, N. Ventosa, J. Supercrit. Fluids 63, 59 (2012)

    Article  CAS  Google Scholar 

  43. M. Perrut, Ind. Eng. Chem. Res. 39(12), 4531 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Ventosa .

Editor information

Editors and Affiliations

Annexes: Vanishing Point Method

Annexes: Vanishing Point Method

The vanishing point method is based on the observation of the progressive redissolution of a solute C until a complete transparent solution is formed. Such solid is in equilibrium with a saturated phase of itself in a homogeneous mixture between two fluids A and B. The increase of the solvating capacity of A/B binary mixture through the change of its composition provokes the progressive redissolution of the solute, which is completed at what is called the vanishing point. The vanishing point method is an adequate procedure for performing solubility studies either at atmospheric pressure, where A and B are both conventional solvents, or at high pressure, where A and B can be a conventional solvent and a compressed fluid (CF), such as CO2, respectively (Wubbolts, F.E., Supercritical crystallisation: volatile components as antisolvents, Ph. D. Thesis, Technical UniG.M., Measurement and modelling of the solubility of solids in mixtures of common solvents and compressed gases, Journal of Supercritical Fluids, 32 (2004) 79–87.).

The high-pressure phase analyzer enables to obtain solubility curves of a solute in organic solvent/CO2 mixtures like those depicted in Fig. 5.A.1, where the CF can present different behaviors with respect to the solution of the solute C in the organic solvent A. Thus, the CF can act as antisolvent (curve 1), cosolvent (curve 2) or can have a synergic behavior with the organic solvent augmenting, as a consequence, the solvating capacity of the mixture organic solvent/CO2 with respect to the pure solvents (curve 3) [7].

Fig.5.A.1
figure 13

Possible solubility curves of a solute C in an organic solvent/CO2 mixture of different compositions at constant pressure and temperature. Curve 1: antisolvent behavior of CO2, curve 2: cosolvent behavior of CO2, curve 3: synergistic behavior between CO2 and the organic solvent. The dashed line represents the ideal solubility variation with respect to solvent compositions. Cs = saturation concentration

In curve 1, the addition of CO2, at constant pressure (Pw) and temperature (Tw), over a saturated solution of the compound C in the organic solvent A provokes the precipitation of such compound presenting, therefore, an antisolvent behavior. In curve 2, there is a range of xCO2 in which the CF acts as a cosolvent, preventing the precipitation of the solute. This range is defined by the intersection point between the ideal dilution line and the curve corresponding to the real variation of compound C solubility with the composition of the binary mixture organic solvent/CO2. In the case of curve 3, the addition of CO2 generates a binary system with a superior solvating power than the organic solvent A due to a synergic effect of the CF and the organic solvent in a range of xCO2 .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Rojas, P.E., Sala, S., Elizondo, E., Veciana, J., Ventosa, N. (2015). Particle Engineering with CO2-Expanded Solvents: The DELOS Platform. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_5

Download citation

Publish with us

Policies and ethics