Skip to main content

Novel Functions of π-Electron Systems in a Heme-DNA Complex

  • Chapter
Chemical Science of π-Electron Systems

Abstract

While DNA is largely double helical, guanine-rich sequences can exist in an alternative structural form known as the G-quadruplex. The G-quadruplex is stabilized by the formation of the G-quartet composed of four guanine bases that are cyclically associated through Hoogsteen hydrogen bonding. The size and planarity of the G-quartet are well suited for interaction with heme, the most ubiquitous cofactor found in nature, through π-π stacking, and hemes and various G-quadruplex DNAs have been reported to form stable heme-DNA complexes that exhibit spectroscopic and functional properties remarkably similar to those of hemoproteins. These findings paved the way to a new research field involving the exploitation of the heme reactivity in the scaffold of the DNA structure. The heme electronic structure can be indirectly tuned through DNA sequence alterations that change the interaction between the heme and the surrounding DNA moiety and be directly affected by chemical modification of heme peripheral side chains. Therefore, the combined use of these two approaches enables us to control the function of a heme-DNA complex, as the function of hemoproteins is controlled through the heme environment furnished by nearby amino acid residues and electronic tuning of the intrinsic heme reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Geyer CR, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35(21):6911–6922

    Article  CAS  Google Scholar 

  2. Li Y, Sen D (1997) Toward an efficient DNAzyme. Biochemistry 36(18):5589–5599

    Article  CAS  Google Scholar 

  3. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5(9):505–517

    Article  CAS  Google Scholar 

  4. Travascio P, Bennet AJ, Wang DY, Sen D (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem Biol 6(11):779–787

    Article  CAS  Google Scholar 

  5. Travascio P, Witting PK, Mauk AG, Sen D (2001) The peroxidase activity of a hemin–DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J Am Chem Soc 123(7):1337–1348

    Article  CAS  Google Scholar 

  6. Witting PK, Travascio P, Sen D, Mauk AG (2001) A DNA oligonucleotide-hemin complex cleaves t-butyl hydroperoxide through a homolytic mechanism. Inorg Chem 40(19):5017–5023

    Article  CAS  Google Scholar 

  7. Poon LCH, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 133(6):1877–1884

    Article  CAS  Google Scholar 

  8. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180):364–366

    Article  CAS  Google Scholar 

  9. Laughlan G, Murchie AIH, Norman DG, Moore MH, Moody PCE, Lilley DMJ, Luisi B (1994) The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 265(5171):520–524

    Article  CAS  Google Scholar 

  10. Han H, Hurley LH (2000) G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol Sci 21(4):136–142

    Article  CAS  Google Scholar 

  11. Wang Y, Patel DJ (1992) Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31(35):8112–8119

    Article  CAS  Google Scholar 

  12. Kato Y, Ohyama T, Mita H, Yamamoto Y (2005) Dynamics and thermodynamics of dimerization of parallel G-quadruplexed DNA formed from d(TTAGn) (n = 3-5). J Am Chem Soc 127(28):9980–9981

    Article  CAS  Google Scholar 

  13. Mikuma T, Terui N, Yamamoto Y, Hori H (2002) A novel heme-DNA coordination complex and its stability. Nucleic Acids Res Suppl 2(1):285–296

    Google Scholar 

  14. Mikuma T, Ohyama T, Terui N, Yamamoto Y, Hori H (2003) Coordination complex between haemin and parallel-quadruplexed d(TTAGGG). Chem Commun 14:1708–1709

    Article  Google Scholar 

  15. Ohyama T, Kato Y, Mita H, Yamamoto Y (2006) Exogenous ligand binding property of a heme-DNA coordination complex. Chem Lett 35(1):126–127

    Article  CAS  Google Scholar 

  16. Saito K, Nakano Y, Tai H, Nagatomo S, Hemmi H, Mita H, Yamamoto Y (2009) Characterization of heme coordination structure in heme-DNA complex possessing gaseous molecule as an exogenous ligand. Nucleic Acids Symp Ser 53:241–242

    Article  CAS  Google Scholar 

  17. Saito K, Tai H, Hemmi H, Kobayashi N, Yamamoto Y (2012) Interaction between the heme and a G-quartet in a heme-DNA complex. Inorg Chem 51(15):8168–8176

    Article  CAS  Google Scholar 

  18. Saito K, Tai H, Fukaya M, Shibata T, Nishimura R, Neya S, Yamamoto Y (2012) Structural characterization of a carbon monoxide adduct of a heme-DNA complex. J Biol Inorg Chem 17(3):437–445

    Article  CAS  Google Scholar 

  19. Watson JD, Crick FH (1952) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  Google Scholar 

  20. Sundquist WI, Klug A (1988) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342(6251):825–829

    Article  Google Scholar 

  21. Smith FW, Feigon J (1992) Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356(6365):164–168

    Article  CAS  Google Scholar 

  22. Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880

    Article  CAS  Google Scholar 

  23. Sen D, Gilbert W (1992) Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 31(1):65–70

    Article  CAS  Google Scholar 

  24. Krishnan-Ghosh Y, Liu D, Balasubramanian S (2004) Formation of an interlocked quadruplex dimer by d(GGGT). J Am Chem Soc 126(35):11009–11016

    Article  CAS  Google Scholar 

  25. Miyoshi D, Nakano A, Toda T, Sugimoto N (2001) Effect of divalent cations on antiparallel G-quartet structure of d(G4T4G4). FEBS Lett 496(2-3):128–133

    Article  CAS  Google Scholar 

  26. Pastenack RF, Gibbs EJ, Villafranca JJ (1983) Interactions of porphyrins with nucleic acids. Biochemistry 22(23):2406–2414

    Article  Google Scholar 

  27. Shikama K, Matsuoka A (1989) Spectral properties unique to the myoglobins lacking the usual distal histidine residue. J Mol Biol 209(3):489–491

    Article  CAS  Google Scholar 

  28. Ikeda-Saito M, Hori H, Andersson LA, Prince RC, Pickering IJ, George GN, Sanders CR, Lutz RS, McKelvey EJ, Mattera R (1992) Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J Biol Chem 267(32):22843–22852

    CAS  Google Scholar 

  29. Abraham RJ, Medforth CJ (1988) The NMR spectra of the porphyrins. 36-Ring currents in octaethylporphyrin, meso-tetraphenylporphyrin and phthalocyanine complexes. Magn Reson Chem 26(9):803–812

    Article  CAS  Google Scholar 

  30. La Mar GN, Davis NL, Parish DW, Smith KM (1983) Heme orientational disorder in reconstituted and native sperm whale myoglobin. Proton nuclear magnetic resonance characterizations by heme methyl deuterium labeling in the Met-cyano protein. J Mol Biol 168(4):887–896

    Article  Google Scholar 

  31. La Mar GN, Toi H, Krishnamoorthi R (1984) Proton NMR investigation of the rate and mechanism of heme rotation in sperm whale myoglobin: evidence for intramolecular reorientation about a heme two-fold axis. J Am Chem Soc 106(21):6395–6401

    Article  Google Scholar 

  32. La Mar GN, Yamamoto Y, Jue T, Smith KM, Pandey RK (1985) 1H NMR characterization of metastable and equilibrium heme orientational heterogeneity in reconstituted and native human hemoglobin. Biochemistry 24(15):3826–3831

    Article  Google Scholar 

  33. McLachlan SJ, La Mar GN, Burns PD, Smith KM, Langry KC (1986) 1H-NMR assignments and the dynamics of interconversion of the isomeric forms of cytochrome b 5 in solution. Biochim Biophys Acta 874(3):274–284

    Article  CAS  Google Scholar 

  34. Du W, Syvitski R, Dewilde S, Moens L, La Mar GN (2003) Solution 1H NMR characterization of equilibrium heme orientational disorder with functional consequences in mouse neuroglobin. J Am Chem Soc 125(27):8080–8081

    Article  CAS  Google Scholar 

  35. Wüthrich K, Baumann R (1974) Hyperfine shifts of the 13C NMR in protoporphyrin IX iron(III) dicyanide and deuteroporphyrin IX iron(III) dicyanide. Helv Chim Acta 57(2):336–350

    Article  Google Scholar 

  36. Park KD, Guo K, Adebodun F, Chiu ML, Sligar SG, Oldfield E (1991) Distal and proximal ligand interactions in heme proteins: correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C17O- and 13CO-labeled species. Biochemistry 30(9):2333–2347

    Article  CAS  Google Scholar 

  37. Moon RB, Dill K, Richards JH (1977) Magnetic resonance studies of the binding of 13C-labeled carbon monoxide to myoglobins and hemoglobins containing modified hemes. Biochemistry 16(2):221–228

    Article  CAS  Google Scholar 

  38. Haider S, Parkinson GN, Neidle S (2002) Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J Mol Biol 320(2):189–200

    Article  CAS  Google Scholar 

  39. Hazel P, Parkinson GN, Neidle S (2006) Topology variation and loop structural homology in crystal and simulated structures of a bimolecular DNA quadruplex. J Am Chem Soc 128(16):5480–5487

    Article  CAS  Google Scholar 

  40. Lecomte JTJ, La Mar GN (1987) Proton NMR probe for hydrogen bonding of distal residues to bound ligands in heme proteins: isotope effect on heme electronic structure of myoglobin. J Am Chem Soc 109(23):7219–7220

    Article  CAS  Google Scholar 

  41. La Mar GN, Chatfield MJ, Peyton DH, de Ropp JS, Smith WS, Krishnamoorthi R, Satterlee JD, Erman JE (1988) Solvent isotope effects on NMR spectral parameters in high-spin ferric hemoproteins: an indirect probe for distal hydrogen bonding. Biochim Biophys Acta 956(3):267–276

    Article  Google Scholar 

  42. Yamamoto Y, Iwafune K, Chujo R, Inoue Y, Imai K, Suzuki T (1992) Molecular mechanism for ligand stabilization in the mollusc myoglobin possessing the distal Val residue. J Mol Biol 228(2):343–346

    Article  CAS  Google Scholar 

  43. Tai H, Nagatomo S, Mita H, Sambongi Y, Yamamoto Y (2005) Characterization of non-native heme coordination structures emerging upon guanidine hydrochloric acid-induced unfolding of Pseudomonas aeruginosa ferricytochrome c 551. Bull Chem Soc Jpn 78(11):2019–2025

    Article  CAS  Google Scholar 

  44. Sen D, Poon LCH (2011) RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: How do they do it and what does it mean? Crit Rev Biochem Mol Biol 46(6):478–492

    CAS  Google Scholar 

  45. Stefan L, Denat F, Monchaud D (2012) Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Res 40(17):8759–8772

    Article  CAS  Google Scholar 

  46. Shibata T, Nagao S, Fukaya M, Tai H, Nagatomo S, Morihashi K, Matsuo T, Hirota S, Suzuki A, Imai K, Yamamoto Y (2010) Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid-alkaline transition in metmyoglobin. J Am Chem Soc 132(17):6091–6098

    Article  CAS  Google Scholar 

  47. Nishimura R, Shibata T, Ishigami I, Ogura T, Tai H, Nagao S, Matsuo T, Hirota S, Shoji O, Watanabe Y, Imai K, Neya S, Suzuki A, Yamamoto Y (2014) Electronic control of discrimination between O2 and CO in myoglobin lacking the distal histidine residue. Inorg Chem 53(2):1091–1099

    Article  CAS  Google Scholar 

  48. Nishimura R, Matsumoto D, Shibata T, Yanagisawa S, Ogura T, Tai H, Matsuo T, Hirota S, Neya S, Suzuki A, Yamamoto Y (2014) Electronic control of ligand-binding preference of a myoglobin mutant. Inorg Chem 53(17):9156–9165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yamamoto, Y., Shibata, T. (2015). Novel Functions of π-Electron Systems in a Heme-DNA Complex. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_43

Download citation

Publish with us

Policies and ethics