Skip to main content
  • 1403 Accesses

Abstract

In the time since the introduction of stereotactic body radiotherapy (SBRT), the technique has afforded local control rates for early-stage non-small-cell lung cancer comparable to those achieved after surgery. In addition, SBRT is both effective and well-tolerated by medically inoperable or elderly patients. SBRT allows delivery of high doses to a limited target volume, with a high degree of precision, thus reducing doses delivered to other areas including organs at risk. Recently, the technique has found clinical applications in the treatment of liver and pancreatic cancer. When thoracic and abdominal tumors are treated with SBRT, one of the most important issues is consideration of respiratory motion. Improper treatment planning may cause a tumor to receive an underdose or normal tissue an overdose. In this Chapter, we describe treatment planning for tumors that are moving; we discuss CT imaging and targeting. Additionally, we suggest that consistent forms of documentation should be used to prescribe, report on, and record SBRT treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33:3874–900. doi:10.1118/1.2349696.

    Article  PubMed  Google Scholar 

  2. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk J, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:822–34. doi:10.1016/S0360-3016(02)02803-1.

    Article  PubMed  Google Scholar 

  3. Barnes EA, Murray BR, Robinson DM, Underwood LJ, Hanson J, Roa WH. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys. 2001;50:1091–8. doi:10.1016/S0360-3015(01)01592-9.

    Article  CAS  PubMed  Google Scholar 

  4. Mori S, Hara R, Yanagi T, Sharp CG, Kumagai M, Asakura H, et al. Four-dimensional measurement of intrafractional respiratory motion of pancreatic tumors using a 256 multi-slice CT scanner. Radiother Oncol. 2009;92:231–7. doi:10.1016/j.radonc.2008.12.015.

    Article  PubMed  Google Scholar 

  5. Korreman SS, Juhler-Nottrup T, Boyer AL. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance. Radiother Oncol. 2008;86:61–8. doi:10.1016/j.radonc.2007.10.038.

    Article  PubMed  Google Scholar 

  6. Redmond KJ, Song DY, Fox JL, Zhou J, Rosenzweig CN, Ford E. Respiratory motion changes of lung tumors over the course of radiation therapy based on respiration-correlated four-dimensional computed tomography scans. Int J Radiat Oncol Biol Phys. 2009;75:1605–12. doi:10.1016/j.ijrobp.2009.05.024.

    Article  PubMed  Google Scholar 

  7. Murphy JD, Adusumilli S, Griffith KA, Ray ME, Zalupski MM, Lawrence TS, et al. Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2007;68:801–7. doi:10.1016/j.ijrobp.2006.12.053.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuo Y, Shibuya K, Nakamura M, Narabayashi M, Sakanaka K, Ueki N, et al. Dose-volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2012;83:e545–9. doi:10.1016/j.ijrobp.2012.01.018.

    Article  PubMed  Google Scholar 

  9. Nakamura A, Shibuya K, Matsuo Y, Nakamura M, Shiinoki T, Mizowaki T, et al. Analysis of dosimetric parameters associated with acute gastrointestinal toxicity and upper gastrointestinal bleeding in locally advanced pancreatic cancer patients treated with gemcitabine-based concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2012;84:369–75. doi:10.1016/j.ijrobp.2011.12.026.

    Article  PubMed  Google Scholar 

  10. Nagata Y, Hiraoka M, Mizowaki T, Narita Y, Matsuo Y, Norishisa Y, et al. Survey of stereotactic body radiation therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group. Int J Radiat Oncol Biol Phys. 2009;75:343–7. doi:10.1016/j.ijrobp.2009.02.087.

    Article  PubMed  Google Scholar 

  11. Hoogeman MS, Nuyttens JJ, Levendag PC, Heijmen BJM. Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol Biol Phys. 2008;70:609–18. doi:10.1016/j.ijrobp.2007.08.066.

    Article  PubMed  Google Scholar 

  12. Somigliana A, Zonca G, Loi G, Sichirollo AE. How thick should CT/MR slices be to plan conformal radiotherapy? A study on the accuracy of three-dimensional volume reconstruction. Radiother Oncol. 1996;40:S66. doi:10.1016/S0167-8140(96)80261-1.

    Article  Google Scholar 

  13. Winer-Muram HT, Jennings SG, Meyer CA, Liang Y, Aisen AM, Tarver RD, et al. Effect of varying CT section width on volumetric measurement of lung tumors and application of compensatory equations. Radiology. 2003;229:184–94. doi:10.1148/radiol.2291020859.

    Article  PubMed  Google Scholar 

  14. Balter JM, Ten Haken RK, Lawrence TS, Lam KL, Robertson JM. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys. 1996;36:167–74. doi:10.1016/S0360-3016(96)00275-1.

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu S, Shirato H, Kagei K, Nishioka T, Bo X, Dosaka-Akita H, et al. Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys. 2000;46:1127–33. doi:10.1016/S0360-3016(99)00352-1.

    Article  CAS  PubMed  Google Scholar 

  16. Chen GT, Kung JH, Beaudette KP. Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol. 2004;14:19–26. doi:10.1053/j.semradonc.2003.10.004.

    Article  PubMed  Google Scholar 

  17. Nakamura M, Narita Y, Matsuo Y, Narabayashi M, Nakata M, Sawada A, et al. Effect of audio coaching on correlation of abdominal displacement with lung tumor motion. Int J Radiat Oncol Biol Phys. 2008;75:558–63. doi:10.1016/j.ijrobp.2008.11.070.

    Article  Google Scholar 

  18. George R, Chung TD, Vedam SS, Ramakrishnan V, Mohan R, Weiss E, et al. Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65:924–33. doi:10.1016/j.ijrobp.2006.02.035.

    Article  PubMed  Google Scholar 

  19. Takeda A, Kunieda E, Shigematsu N, Hossain DM, Kawase T, Ohashi T, et al. Small lung tumors: long-scan-time CT for planning of hypofractionated stereotactic radiation therapy–initial findings. Radiology. 2005;237:295–300. doi:10.1148/radiol.2371032102.

    Article  PubMed  Google Scholar 

  20. Lagerwaard FJ, Van Sornsen de Koste JR, Nijssen-Visser MR, Schuchhard-Schipper RH, Oei SS, Munne A, et al. Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys. 2001;51:932–7. doi:10.1016/S0360-3016(01)01716-3.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura M, Narita Y, Matsuo Y, Narabayashi M, Nakata M, Yano S, et al. Geometrical differences in target volumes between slow CT and 4D CT imaging in stereotactic body radiotherapy for lung tumors in the upper and middle lobe. Med Phys. 2008;35:4142–8. doi:10.1118/1.2968096.

    Article  PubMed  Google Scholar 

  22. Ford EC, Mageras GS, Yorke E, Ling CC. Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys. 2003;30:88–97. doi:10.1118/1.1531177.

    Article  CAS  PubMed  Google Scholar 

  23. Vedam SS, Keall PJ, Kini H, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003;48:45–62. doi:10.1088/0031-9155/48/1/304.

    Article  CAS  PubMed  Google Scholar 

  24. Keall PJ, Stargschall G, Shukla H, Foster KM, Ortiz V, Stecens CW, et al. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol. 2004;49:2053–67. doi:10.1088/0031-9155/49/10/015.

    Article  CAS  PubMed  Google Scholar 

  25. Pan T, Lee TY, Rietzel E, Chen GTY. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys. 2004;31:333–40. doi:10.1118/1.1639993.

    Article  PubMed  Google Scholar 

  26. Rietzel E, Pan T, Chen GTY. Four-dimensional computed tomography: image formation and clinical protocol. Med Phys. 2005;32:874–89. doi:10.1118/1.1869852.

    Article  PubMed  Google Scholar 

  27. Rietzel E, Liu AK, Doppke KP, Wolfgang JA, Chen AB, Chen GT, et al. Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys. 2006;66:287–95. doi:10.1016/j.ijrobp.2006.05.024.

    Article  PubMed  Google Scholar 

  28. Underberg RW, Lagerwaard FJ, Cuijpers JP, Slotman BJ, van Sörnsen de Koste JR, Senan S. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys. 2004;60:1283–90. doi:10.1016/j.ijrobp.2004.07.665.

    Article  PubMed  Google Scholar 

  29. Cai J, Read PW, Baisden JM, Larner JM, Benedict SH, Sheng K. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2007;62:895–902. doi:10.1016/j.ijrobp.2007.07.2322.

    Article  Google Scholar 

  30. Hanley J, Debois MM, Mah D, Mageras GS, Raben A, Rosenzweig K, et al. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys. 1999;45:603–11. doi:10.1016/s0360-3016(99)00154-6.

    Article  CAS  PubMed  Google Scholar 

  31. Remouchamps VM, Vicini FA, Sharpe MB, Kestin LL, Martinez AA, Wong JW. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys. 2003;55:392–406. doi:10.1016/S0360-3016(02)04143-3.

    Article  PubMed  Google Scholar 

  32. Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51:1410–21. doi:10.1016/S0360-3016(00)80124-8.

    Article  CAS  PubMed  Google Scholar 

  33. Eccles CL, Dawson LA, Moseley JL, Brock KK. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int J Radiat Oncol Biol Phys. 2006;80:938–46. doi:10.1016/j.ijrobp.2010.08.003.

    Article  Google Scholar 

  34. Koshani R, Balter JM, Hayman JA, Henning GT, van Herk M. Short-term and long-term reproducibility of lung tumor position using active breathing control (ABC). Int J Radiat Oncol Biol Phys. 2006;65:1553–9. doi:10.1016/j.ijrobp.2006.04.027.

  35. Glide-Hurst CK, Gopan E, Hugo GD. Anatomic and pathologic variability during radiotherapy for a hybrid active breath-hold gating technique. Int J Radiat Oncol Biol Phys. 2010;77:910–7. doi:10.1016/j.ijrobp.2009.09.080.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Nakamura M, Shibuya K, Shiinoki T, Matsuo Y, Nakamura A, Nakata M, et al. Positional reproducibility of pancreatic tumors under end-exhalation breath-hold conditions using a visual feedback technique. Int J Radiat Oncol Biol Phys. 2011;79:1565–71. doi:10.1016/j.ijrobp.2010.05.046.

    Article  PubMed  Google Scholar 

  37. Peng Y, Vedam S, Chang JY, Gao S, Sadagopan R, Bues M, et al. Implementation of feedback-guided voluntary breath-hold gating for cone beam CT-based stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2011;80:909–17. doi:10.1016/j.ijrobp.2010.08.011.

    Article  PubMed  Google Scholar 

  38. Ueki N, Matsuo Y, Nakamura M, Mukumoto N, Iizuka Y, Miyabe Y, et al. Intra- and interfractional variations in geometric arrangement between lung tumours and implanted markers. Radiother Oncol. 2014;110:523–8. doi:10.1016/j.radonc.2014.01.014.

    Article  PubMed  Google Scholar 

  39. Hoogeman M, Prevost JB, Nuyttens J, Poll J, Levendag P, Heijmen B. Clinical accuracy of the respiratory tumor tracking system of the CyberKnife by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74:297–303. doi:10.1016/j.ijrobp.2008.12.041.

    Article  PubMed  Google Scholar 

  40. Akimoto M, Nakamura M, Mukumoto N, Tanabe H, Yamada M, Matsuo Y, et al. Predictive uncertainty in infrared marker-based dynamic tumor tracking with Vero4DRT. Med Phys. 2013;40:091705-1-8. doi:10.1118/1.4817236.

    Article  Google Scholar 

  41. Louie AV, Rodrigues G, Olsthoom J, Palma D, Yu E, Yaremko B, et al. Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother Oncol. 2010;95:166–71. doi:10.1016/j.radonc.2009.12.028.

    Article  PubMed  Google Scholar 

  42. ICRU. Prescribing, recording, and reporting photon beam therapy. ICRU Report No. 50. Bethesda: ICRU Publications; 1993.

    Google Scholar 

  43. ICRU. Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report No. 50). ICRU Report No. 62. Bethesda: ICRU Publications; 1999.

    Google Scholar 

  44. Giraud PM, Antoin A, Larrouy B, Milleron P, Callard Y, De Rycke MF, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys. 2000;48:1015–24. doi:10.1016/S0360-3016(00)00750-1.

    Article  CAS  PubMed  Google Scholar 

  45. Grills IS, Fitch DL, Goldstein NS, Yan D, Chmielewski GW, Welsh RJ, et al. Clinicopathologic analysis of microscopic extension in lung adenocarcinoma: defining clinical target volume for radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69:334–41. doi:10.1016/j.ijrobp.2007.03.023.

    Article  PubMed  Google Scholar 

  46. Wulf J, Hädinger U, Oppitz U, Thiele W, Ness-Dourdoumas R, Flentje M. Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol. 2001;177:645–55. doi:10.1007/pl00002379.

    Article  CAS  PubMed  Google Scholar 

  47. Timmerman R, Papiez L, McGarry R, Likes L, DesRosiers C, Frost S, et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest. 2003;124:1946–55. doi:10.1378/chest.124.5.1946.

    Article  PubMed  Google Scholar 

  48. Takayama K, Nagata Y, Negoro Y, Mizowaki T, Sakamoto T, Sakamoto M, et al. Treatment planning of stereotactic radiotherapy for solitary lung tumor. Int J Radiat Oncol Biol Phys. 2005;61:1565–71. doi:10.1016/j.ijrobp.2004.12.066.

    Article  PubMed  Google Scholar 

  49. Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76:S42–9. doi:10.1016/j.ijrobp.2009.04.095.

    Article  PubMed  Google Scholar 

  50. Roman NO, Shepherd W, Mukhopadhyay N, Hugo GD, Weiss E. Interfractional positional variability of fiducial markers and primary tumors in locally advanced non-small-cell lung cancer during audiovisual biofeedback radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:1566–72. doi:10.1016/j.ijrobp.2011.10.051.

    Article  PubMed  Google Scholar 

  51. Oku Y, Takeda A, Sanuki N, Sudo Y, Oooka Y, Aolo Y, et al. Stereotactic ablative body radiation therapy with dynamic conformal multiple arc therapy for liver tumors: optimal isodose line fitting to the planning target volume. Pract Radiat Oncol. 2014;4:e7–13. doi:10.1016/j.prro.2013.04.001.

    Article  PubMed  Google Scholar 

  52. Persson GF, Josiprovic M, von der Recke P, Aznar MC, Juhler-Nøttrup T, Munck af Rosenschhöld, et al. Stability of percutaneously implanted markers for lung stereotactic radiotherapy. J Appl Clin Med Phys. 2013;14:187–95. doi:10.1120/jacmp.v14i5.4337.

    PubMed  Google Scholar 

  53. Marks LB, Bentzen SM, Deasy JO, Kong F, Bradley JD, Vogelisu IS, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76:S70–6. doi:10.1016/j.ijrobp.2009.06.091.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nakamura, M. (2015). Treatment Planning. In: Nagata, Y. (eds) Stereotactic Body Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54883-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54883-6_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54882-9

  • Online ISBN: 978-4-431-54883-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics