Skip to main content

Combinatorial Thin-Film Synthesis for New Nanoelectronics Materials

  • Chapter
  • First Online:
Nanoscale Redox Reaction at Metal/Oxide Interface

Part of the book series: NIMS Monographs ((NIMSM))

  • 441 Accesses

Abstract

In this chapter, the combinatorial synthesis techniques for the development of new thin-film materials for nanoelectronics are briefly introduced. Although this topic is not relating to the oxide thin-film materials directory, for the high-throughput material synthesis and systematic investigation, the combinatorial synthesis technique is effective. In former chapters, these techniques are used and have been effective. In the thin-film synthesis, technically, by combining a moving mask system and a target exchange system with physical thin-film growth methods, a ternary or binary composition spread thin-film sample can be obtained. In particular, in this chapter, combinatorial focused Ar ion-beam sputtering (FIBS), which is optimized for material research on new metal thin films and developed in NIMS, is mainly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiang XD, Sun X, Briceno G, Lou Y, Wang K, Chang H, Wallance-Freedman WG, Chen S, Schulz PG (1995) A combinatorial approach to materials discovery. Science 268:1738–1740. https://doi.org/10.1126/science.268.5218.1738

    Article  CAS  Google Scholar 

  2. Schneemeyer LF, van Dover RB, Fleming RM (1999) High dielectric constant Hf-Sn-Ti-O thin films. Appl Phys Lett 75:1967. https://doi.org/10.1063/1.124887

    Article  CAS  Google Scholar 

  3. Koinuma H, Takeuchi I (2004) Combinatorial solid-state chemistry of inorganic materials. Nat Mater 3:429–438. https://doi.org/10.1038/nmat1157

    Article  CAS  Google Scholar 

  4. Chikyow T, Nagata T, Ahmet P, Hasegawa T, Kukuznyak D, Koinuma H (2010) Combinatorial oxide film synthesis and its application to new materials discovery. In: Oxide thin film technology-growth and applications, pp 37–57 (ISBN: 978-81-7895-468-4, Editor(s): Tomoyasu Inoue) (Transworld Research Network, 2010, India)

    Google Scholar 

  5. Cherief N, Givord D, Lie´nard A, Mackay K, McGrath OFK, Rebouillat JP, Robaut F, Souche Y (1993) Laser ablation deposition and magnetic characterization of metallic thin films based on rare earth and transition metals. J Magn Magn Mater 121:94–101. 10.1016/0304-8853(93)91157-3

    Article  CAS  Google Scholar 

  6. Sakurai J, Hata S, Shimokohbe A (2005) Novel fabrication method of metallic glass thin films using carousel-type sputtering system. Proc SPIE 5650:260. https://doi.org/10.1117/12.581811

    Article  CAS  Google Scholar 

  7. Ahmet P, Nagata T, Kukuruznyak D, Yagyu S, Wakayama Y, Yoshitake M, Chikyow T (2006) Composition spread metal thin film fabrication technique based on ion beam sputter deposition. Appl Surf Sci 252:2472–2476. 10.1016/j.apsusc.2005.05.078

    Article  CAS  Google Scholar 

  8. Lippmaa M, Koida T, Minami H, Jin ZW, Kawasaki M, Koinuma H (2002) Design of compact pulsed laser deposition chambers for the growth of combinatorial oxide thin film libraries. Appl Surf Sci 189:205–209. https://doi.org/10.1016/S0169-4332(01)01002-9

    Article  CAS  Google Scholar 

  9. Ahmet P, Yoo YZ, Hasegawa H, Koinuma T, Chikyow T (2004) Fabrication of three-component composition spread thin film with controlled composition and thickness. Appl Phys A Mater Sci Process 79:837–839. https://doi.org/10.1007/s00339-004-2627-9

    Article  CAS  Google Scholar 

  10. Chikyow T, Ahamet P, Hasegawa K, Koinuma H (2003) Multi-element compound manufacturing apparatus. Japan patent, 2003-277914,A

    Google Scholar 

  11. Koinuma H, Matsumoto Y, Idaka K, Katayuama M (2006) Masking mechanism and film deposition apparatus having the same. Japan patent, 2006-063433,A

    Google Scholar 

  12. Yamamoto Y, Takahashi R, Matsumoto Y, Chikyow T, Koinuma H (2004) Mathematical design of linear action masks for binary and ternary composition spread film library. Appl Surf Sci 223:9–13. https://doi.org/10.1016/j.apsusc.2003.10.025

    Article  CAS  Google Scholar 

  13. Mott-Smith H, Langmuir I (1926) The theory of collectors in gaseous discharges. Phys Rev 28:727–763. https://doi.org/10.1103/PhysRev.28.727

    Article  CAS  Google Scholar 

  14. Heidenreich JE III, Paraszczak JR, Moisan M, Suave G (1987) Electrostatic probe analysis of microwave plasmas used for polymer etching. J Vac Sci Technol B 5:347. https://doi.org/10.1116/1.583900

    Article  CAS  Google Scholar 

  15. Shatas AA, Hu YZ, Irene EA (1992) Langmuir probe and optical emission studies of Ar, O2, and N2 plasmas produced by an electron cyclotron resonance microwave source. J Vac Sci Technol A 10:3119. https://doi.org/10.1116/1.577874

    Article  CAS  Google Scholar 

  16. Behrisch R (1981) Sputtering by Bombardment I. Springer, Berlin

    Book  Google Scholar 

  17. Macak K, Kouznetsov V, Schneider J, Helmersson U, Petrov I (2000) Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. J Vac Sci Technol A 18:1533. https://doi.org/10.1116/1.582380

    Article  CAS  Google Scholar 

  18. Nagata T, Yoo YZ, Ahmet P, Chikyow T (2005) Effects of single-crystalline GaN target on GaN thin films in pulsed laser deposition process. Jpn J Appl Phys 44:7896–7900. https://doi.org/10.1143/JJAP.44.7896

    Article  CAS  Google Scholar 

  19. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  Google Scholar 

  20. Cho Y, Kazuta S, Matsuura K (1999) Scanning nonlinear dielectric microscopy with nanometer resolution. Appl Phys Lett 75:2833. https://doi.org/10.1063/1.125165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Nagata .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagata, T. (2020). Combinatorial Thin-Film Synthesis for New Nanoelectronics Materials. In: Nanoscale Redox Reaction at Metal/Oxide Interface. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54850-8_6

Download citation

Publish with us

Policies and ethics