Skip to main content

The Turtle Evolution: A Conundrum in Vertebrate Evo-Devo

  • Chapter
  • First Online:
New Principles in Developmental Processes

Abstract

Because of their unique morphology, turtles have raised profound questions as to their evolutionary origin. In striking contrast to the body plan of other tetrapods, the shoulder girdle of turtles sits inside the rib cage, which comprises the dorsal shell, or carapace. By this topological change of the skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. In this chapter, we first overview the phylogenetic positioning of turtles, and then review how turtles evolved their unique body plan. In brief, three points have been clarified by recent studies. (1) Turtles have birds/crocodilians (or archosaurians) affinity of evolutionary origin. (2) During embryogenesis, the turtle also establishes the vertebrate basic body plan, as in other vertebrates, followed by the late developmental stages of generating turtle-specific structures, such as folding of the lateral body wall to make the apparent inside-out topology of shoulder girdle against ribs. (3) One of the causal factors of folding appears to be the concentric growth of carapacial margin, which involves an ancestral gene expression cascade in a new location. These reports allow us to hypothesize the stepwise, not necessarily saltatory, evolution of turtles, consistent with the recent finding of a transitional fossil animal, Odontochelys, that did not have the carapace but already possessed the plastron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhullar B-AS, Bever GS (2009) An archosaur-like laterosphenoid in early turtles (Reptilia: Pantestudines). Breviora 518:1–11

    Article  Google Scholar 

  • Burke AC (1989) Development of the turtle carapace: implications for the evolution of a novel bauplan. J Morphol 199:363–378

    Article  Google Scholar 

  • Burke AC (1991) The development and evolution of the turtle body plan. Inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627

    Google Scholar 

  • Burke AC (2009) Turtles……again. Evol Dev 11:622–624

    Article  PubMed  Google Scholar 

  • Caspers GJ, Reinders GJ, Leunissen JA, Wattel J, de Jong WW (1996) Protein sequences indicate that turtles branched off from the amniote tree after mammals. J Mol Evol 42:580–586

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-Q, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383

    Article  Google Scholar 

  • Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC (2012) More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 8:783–786

    Article  PubMed Central  PubMed  Google Scholar 

  • Damiani RJ, Modesto JP (2001) The morphology of the pareiasaurian vomer. N Jb Geol Paläont Mh 7:423–434

    Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate bauplan and the evolution of morphologies through heterochrony. Development (Camb) 1994:135–142

    Google Scholar 

  • Gilbert SF, Loredo GA, Brukman A, Burke AC (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Cebra-Thomas JA, Burke AC (2008) How the turtle gets its shell. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC, Boca Raton, pp 1–16

    Google Scholar 

  • Hall BK (1998) Evolutionary developmental biology, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Hedges SB (2012) Amniote phylogeny and the position of turtles. BMC Biol 10:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Hedges SB, Moberg KD, Maxson LR (1990) Tetrapod phylogeny inferred from 18S and 28S ribosomal RNA sequences and a review of the evidence for amniote relationships. Mol Biol Evol 7:607–633

    CAS  PubMed  Google Scholar 

  • Irie N, Kuratani S (2011) Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun 2:248

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawashima-Ohya Y, Narita Y, Nagashima H, Usuda U, Kuratani S (2011) Hepatocyte growth factor is crucial for development of the carapace in turtles. Evol Dev 13:260–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuraku S, Usuda R, Kuratani S (2005) Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 7:3–17

    Article  CAS  PubMed  Google Scholar 

  • Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of the turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13:1–14

    Article  PubMed  Google Scholar 

  • Li C, Wu X, Rieppel O, Wang L, Zhao L (2008) An ancestral turtle from the Late Triassic of southwestern China. Nature (Lond) 45:497–501

    Article  Google Scholar 

  • Lyson TR, Sperling EA, Heimberg AM, Gauthier JA, King BL et al (2012) MicroRNAs support a turtle + lizard clade. Biol Lett 8:104–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merck JW (1997) A phylogenetic analysis of the euryapsid reptiles. Unpublished Ph.D. dissertation, University of Texas at Austin

    Google Scholar 

  • Müller J (2003) Early loss and multiple return of the lower temporal arcade in diapsid reptiles. Naturwissenschaften 90:473–476

    Article  PubMed  Google Scholar 

  • Müller J, Sterli J, Anquetin J (2011) Carotid circulation in amniotes and its implications for turtle relationships. N Jb Geol Paläont Abh 261:289–297

    Article  Google Scholar 

  • Nagashima H, Uchida K, Yamamoto K, Kuraku S, Usuda R, Kuratani S (2005) Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle. Dev Dyn 232:149–161

    Article  PubMed  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Ohya YK, Narita Y, Kuratani S (2007) On the carapacial ridge in turtle embryos: its developmental origin, function, and the chelonian body plan. Development (Camb) 134:2219–2226

    Article  CAS  Google Scholar 

  • Nagashima H, Sugahara F, Takechi M, Ericsson R, Kawashima-Ohya Y, Narita Y, Kuratani S (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325:193–196

    Article  CAS  PubMed  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S (2012a) Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int 87:1–13

    Article  PubMed  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S (2012b) Origin of the turtle body plan: the folding theory to illustrate turtle-specific developmental repatterning. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification. Springer, Dordrecht

    Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and cadherin pathways. Science 303:1483–1487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohya YK, Kuraku S, Kuratani S (2005) Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J Exp Zool 304B:107–118

    Article  CAS  Google Scholar 

  • Ohya YK, Usuda R, Kuraku S, Nagashima H, Kuratani S (2006) Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing and unusual expression pattern. Evol Dev 8:415–423

    Article  CAS  PubMed  Google Scholar 

  • Raff A (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  • Rieppel O (2000) Turtles as diapsid reptiles. Zool Scr 29:199–212

    Article  Google Scholar 

  • Rieppel O (2001) Turtles as hopeful monsters. Bioessays 23:987–991

    Article  CAS  PubMed  Google Scholar 

  • Rieppel O, de Braga M (1996) Turtles as diapsid reptiles. Nature (Lond) 384:453–455

    Article  CAS  Google Scholar 

  • Romer AS (1956) Osteology of the reptiles. University of Chicago Press, Chicago

    Google Scholar 

  • Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N et al (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14:R28

    Article  PubMed  Google Scholar 

  • Tokita M, Kuratani S (2001) Normal embryonic stages of the Chinese soft-shelled turtle Pelodiscus sinensis. Zool Sci 18:705–715

    Article  Google Scholar 

  • Tsuji LA, Müller J (2009) Assembling the history of the Parareptilia: phylogeny, diversification, and a new definition of the clade. Fossil Rec 12:71–81

    Article  Google Scholar 

  • Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z et al (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. doi:10.1038/ng.2615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kuratani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Irie, N., Nagashima, H., Kuratani, S. (2014). The Turtle Evolution: A Conundrum in Vertebrate Evo-Devo. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_23

Download citation

Publish with us

Policies and ethics