Skip to main content

Toward Realization of New Biorefinery Industries Using Corynebacterium glutamicum

  • Chapter
  • First Online:
Microbial Production

Abstract

Biorefinery technologies for the sustainable production of fuels and chemicals by bioprocesses using biomass resources as a feedstock have been extensively studied worldwide, aiming at construction of a society in the twenty-first century based on non-fossil renewable resources. The leading commercial production of bioethanol uses starch biomass (grains) as a feedstock. Because of concern about competition with food resources, the use of non-food biomass such as agricultural residues and energy crops is required. However, the lignocellulosic biomass contains significant amounts of C5 sugars such as xylose and arabinose, which present utilization difficulties for the microorganisms being used. This chapter describes our research and development at the Research Institute of Innovative Technology for the Earth (RITE) of growth-arrested bioprocesses using Corynebacterium glutamicum, an industrially useful bacterium. We constructed a genetically engineered strain that can consume xylose and arabinose at the same rate as innately preferred glucose without cell growth under oxygen deprivation. The efficient and simultaneous utilization of C6 and C5 sugars is advantageous for solution of the key technological barriers to realization of biorefinery industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature (Lond) 451:86–89

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2012a) Engineering of Corynebacterium glutamicum for high yield l-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257

    Google Scholar 

  • Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012b) Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78:865–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004b) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Fujii M, Mori E, Inui M, Yukawa H (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid l-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87:159–165

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2009) Identification and functional analysis of the gene cluster for l-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3419–3429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Markets and Markets (2011) Global renewable chemicals market by geography, feedstocks, prices, applications trends and forecasts (2010–2015). http://www.marketresearch.com/MarketsandMarkets-v3719/Global-Renewable-Chemicals-Geography-Feedstocks-6111458/. Accessed 1 Feb 2011

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  PubMed  Google Scholar 

  • Pike Research (2011) Green chemical industry to soar to $98.5 billion by 2020. http://www.pikeresearch.com/newsroom/green-chemical-industry-to-soar-to-98-5-billion-by-2020. Accessed 20 Jun 2011

  • Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Teramoto H, Inui M, Yukawa H (2011) Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Appl Microbiol Biotechnol 89:1905–1916

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Energy (2012) Biomass multi-year program plan. http://www1.eere.energy.gov/biomass/pdfs/mypp_april_2012.pdf. Accessed Apr 2012

  • Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H (2012) Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol 78:4447–4457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

 We thank Crispinus A. Omumasaba (RITE) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Teramoto, H., Inui, M., Yukawa, H. (2014). Toward Realization of New Biorefinery Industries Using Corynebacterium glutamicum . In: Anazawa, H., Shimizu, S. (eds) Microbial Production. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54607-8_22

Download citation

Publish with us

Policies and ethics