Skip to main content

Cell Biology of Lens Epithelial Cells

  • Chapter
  • First Online:

Abstract

The epithelium of the vertebrate lens plays a critical role in tissue homeostasis and maintenance of lens clarity. The epithelium is the most metabolically active region of the lens and contains all the mitotically active cells. Cell division in the epithelium occurs exclusively in the germinative zone, a swathe of cells encircling the lens just above the equator. Fibroblast growth factor, a molecule with a demonstrated role in lens fiber cell differentiation, may promote epithelial cell division although other growth factors likely contribute. The organization of cells within the lens epithelium has often been likened to a cobblestone pattern. However, recent three-dimensional imaging studies have revealed that individual epithelial cells have a complex, polarized anatomy, with morphologically distinct apical and basolateral domains. The apical membrane is delineated by a hybrid junctional complex consisting of adherens junctions and tight junctions. Adherens junctions play a critical role in epithelial organization and loss of nectins or cadherins, two core components of adherens junctions, has catastrophic consequences for lens organization and transparency. Tight junctions, the apical-most junctional element, restrict the paracellular flow of ions into the lens but also serve as scaffolds for an assemblage of important polarity proteins. Targeted disruption of the partitioning defective (Par) family of polarity proteins results in loss of apical cell junctions and promotes epithelial-to-mesenchymal transition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bassnett S, Shi Y (2010) A method for determining cell number in the undisturbed epithelium of the mouse lens. Mol Vis 16:2294–2300

    PubMed Central  PubMed  Google Scholar 

  2. Kuszak JR, Costello MJ (2004) The structure of the vertebrate lens. In: Robinson ML, Lovicu FJ (eds) Development of the ocular lens. Cambridge University Press, Cambridge, pp 71–118

    Chapter  Google Scholar 

  3. Shi Y, Bassnett S (2007) Inducible gene expression in the lens using tamoxifen and a GFP reporter. Exp Eye Res 85:732–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bassnett S (2005) Three-dimensional reconstruction of cells in the living lens: the relationship between cell length and volume. Exp Eye Res 81:716–723

    Article  CAS  PubMed  Google Scholar 

  5. Shi Y, Barton K, De Maria A, Petrash JM, Shiels A, Bassnett S (2009) The stratified syncytium of the vertebrate lens. J Cell Sci 122:1607–1615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mallet JD, Rochette PJ (2011) Ultraviolet light-induced cyclobutane pyrimidine dimers in rabbit eyes. Photochem Photobiol 87:1363–1368

    Article  CAS  PubMed  Google Scholar 

  7. Haddad A, Bennett G (1988) Synthesis of lens capsule and plasma membrane glycoproteins by lens epithelial cells and fibers in the rat. Am J Anat 183:212–225

    Article  CAS  PubMed  Google Scholar 

  8. Halfter W, Candiello J, Hu H, Zhang P, Schreiber E, Balasubramani M (2013) Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adh Migr 7:64–71

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ziebarth NM, Manns F, Uhlhorn SR, Venkatraman AS, Parel JM (2005) Noncontact optical measurement of lens capsule thickness in human, monkey, and rabbit postmortem eyes. Invest Ophthalmol Vis Sci 46:1690–1697

    Article  PubMed  Google Scholar 

  10. Danysh BP, Czymmek KJ, Olurin PT, Sivak JG, Duncan MK (2008) Contributions of mouse genetic background and age on anterior lens capsule thickness. Anat Rec (Hoboken) 291:1619–1627

    Article  Google Scholar 

  11. Shi Y, Tu Y, De Maria A, Mecham RP, Bassnett S (2013) Development, composition, and structural arrangements of the ciliary zonule of the mouse. Invest Ophthalmol Vis Sci 54:2504–2515

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nielsen PA, Baruch A, Shestopalov VI et al (2003) Lens connexins alpha3Cx46 and alpha8Cx50 interact with zonula occludens protein-1 (ZO-1). Mol Biol Cell 14:2470–2481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nguyen MM, Rivera C, Griep AE (2005) Localization of PDZ domain containing proteins discs large-1 and scribble in the mouse eye. Mol Vis 11:1183–1199

    CAS  PubMed  Google Scholar 

  14. De Maria A, Shi Y, Luo X, Van Der Weyden L, Bassnett S (2011) Cadm1 expression and function in the mouse lens. Invest Ophthalmol Vis Sci 52:2293–2299

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kuwabara T (1975) The maturation of the lens cell: a morphologic study. Exp Eye Res 20:427–443

    Article  CAS  PubMed  Google Scholar 

  16. Lo WK (1988) Adherens junctions in the ocular lens of various species: ultrastructural analysis with an improved fixation. Cell Tissue Res 254:31–40

    Article  CAS  PubMed  Google Scholar 

  17. Lo WK, Shaw AP, Paulsen DF, Mills A (2000) Spatiotemporal distribution of zonulae adherens and associated actin bundles in both epithelium and fiber cells during chicken lens development. Exp Eye Res 71:45–55

    Article  CAS  PubMed  Google Scholar 

  18. Kuszak JR, Novak LA, Brown HG (1995) An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses. Exp Eye Res 61:579–597

    Article  CAS  PubMed  Google Scholar 

  19. Indra I, Hong S, Troyanovsky R, Kormos B, Troyanovsky S (2013) The adherens junction: a mosaic of cadherin and nectin clusters bundled by actin filaments. J Invest Dermatol 133:2546–2554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nose A, Takeichi M (1986) A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J Cell Biol 103:2649–2658

    Article  CAS  PubMed  Google Scholar 

  21. Hatta K, Takagi S, Fujisawa H, Takeichi M (1987) Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120:215–227

    Article  CAS  PubMed  Google Scholar 

  22. Bassnett S, Wilmarth PA, David LL (2009) The membrane proteome of the mouse lens fiber cell. Mol Vis 15:2448–2463

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lattin JE, Schroder K, Su AI et al (2008) Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:5

    Article  PubMed Central  PubMed  Google Scholar 

  24. Pontoriero GF, Smith AN, Miller LA, Radice GL, West-Mays JA, Lang RA (2009) Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev Biol 326:403–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Etienne-Manneville S (2011) Control of polarized cell morphology and motility by adherens junctions. Semin Cell Dev Biol 22:850–857

    Article  CAS  PubMed  Google Scholar 

  26. Brieher WM, Yap AS (2013) Cadherin junctions and their cytoskeleton(s). Curr Opin Cell Biol 25:39–46

    Article  CAS  PubMed  Google Scholar 

  27. Cadigan KM, Peifer M (2009) Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 1:a002881

    Article  PubMed Central  PubMed  Google Scholar 

  28. Cain S, Martinez G, Kokkinos MI et al (2008) Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 321:420–433

    Article  CAS  PubMed  Google Scholar 

  29. Takai Y, Ikeda W, Ogita H, Rikitake Y (2008) The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol 24:309–342

    Article  CAS  PubMed  Google Scholar 

  30. Lachke SA, Higgins AW, Inagaki M et al (2012) The cell adhesion gene PVRL3 is associated with congenital ocular defects. Hum Genet 131:235–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dupin I, Camand E, Etienne-Manneville S (2009) Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185:779–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ikenouchi J, Suzuki M, Umeda K et al (2012) Lipid polarity is maintained in absence of tight junctions. J Biol Chem 287:9525–9533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Piontek J, Winkler L, Wolburg H et al (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158

    Article  CAS  PubMed  Google Scholar 

  34. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lo WK (1987) In vivo and in vitro observations on permeability and diffusion pathways of tracers in rat and frog lenses. Exp Eye Res 45:393–406

    Article  CAS  PubMed  Google Scholar 

  36. Goodenough DA, Dick JS 2nd, Lyons JE (1980) Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol 86:576–589

    Article  CAS  PubMed  Google Scholar 

  37. Sugiyama Y, Prescott AR, Tholozan FM, Ohno S, Quinlan RA (2008) Expression and localisation of apical junctional complex proteins in lens epithelial cells. Exp Eye Res 87:64–70

    Article  CAS  PubMed  Google Scholar 

  38. Kang LI, Wang Y, Suckow AT et al (2007) Deletion of JAM-A causes morphological defects in the corneal epithelium. Int J Biochem Cell Biol 39:576–585

    Article  CAS  PubMed  Google Scholar 

  39. Mochida GH, Ganesh VS, Felie JM et al (2010) A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Am J Hum Genet 87:882–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Daniele LL, Adams RH, Durante DE, Pugh EN Jr, Philp NJ (2007) Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol 505:166–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wodarz A (2005) Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Curr Opin Cell Biol 17:475–481

    Article  CAS  PubMed  Google Scholar 

  42. Rivera C, Yamben IF, Shatadal S, Waldof M, Robinson ML, Griep AE (2009) Cell-autonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis. Dev Dyn 238:2292–2308

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sugiyama Y, Akimoto K, Robinson ML, Ohno S, Quinlan RA (2009) A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol 336:246–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Eldred JA, Dawes LJ, Wormstone IM (2011) The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci 366:1301–1319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Viloria-Petit AM, Wrana JL (2010) The TGFbeta-Par6 polarity pathway: linking the Par complex to EMT and breast cancer progression. Cell Cycle 9:623–624

    Article  CAS  PubMed  Google Scholar 

  46. Tiwari N, Gheldof A, Tatari M, Christofori G (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22:194–207

    Article  CAS  PubMed  Google Scholar 

  47. Augusteyn RC (2008) Growth of the lens: in vitro observations. Clin Exp Optom 91:226–239

    Article  PubMed  Google Scholar 

  48. Augusteyn RC (2010) On the growth and internal structure of the human lens. Exp Eye Res 90:643–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Harding CV, Hughes WL, Bond VP, Schork P (1960) Autoradiographic localization of tritiated thymidine in wholemount preparations of lens epithelium. Arch Ophthalmol 63:58–65

    Article  CAS  PubMed  Google Scholar 

  50. Hanna C, O’Brien JE (1961) Cell production and migration in the epithelial layer of the lens. Arch Ophthalmol 66:103–107

    Article  CAS  PubMed  Google Scholar 

  51. Thomson DS, Pirie A, Overall M (1962) Autoradiography of lens epithelium after parenteral injection of tritiated thymidine. Arch Ophthalmol 67:464–469

    Article  CAS  PubMed  Google Scholar 

  52. Nagahama H, Hatakeyama S, Nakayama K, Nagata M, Tomita K (2001) Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat Embryol (Berl) 203:77–87

    Article  CAS  Google Scholar 

  53. Zhang P, Wong C, DePinho RA, Harper JW, Elledge SJ (1998) Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev 12:3162–3167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zhou M, Leiberman J, Xu J, Lavker RM (2006) A hierarchy of proliferative cells exists in mouse lens epithelium: implications for lens maintenance. Invest Ophthalmol Vis Sci 47:2997–3003

    Article  PubMed Central  PubMed  Google Scholar 

  55. Yamamoto N, Majima K, Marunouchi T (2008) A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol 41:83–91

    Article  PubMed  Google Scholar 

  56. Oka M, Toyoda C, Kaneko Y, Nakazawa Y, Aizu-Yokota E, Takehana M (2010) Characterization and localization of side population cells in the lens. Mol Vis 16:945–953

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Harding CV, Donn A, Srinivasan BD (1959) Incorporation of thymidine by injured lens epithelium. Exp Cell Res 18:582–585

    Article  CAS  PubMed  Google Scholar 

  58. Mikulicich AG, Young RW (1963) Cell proliferation and displacement in the lens epithelium of young rats injected with tritiated thymidine. Invest Ophthalmol 2:344–354

    CAS  PubMed  Google Scholar 

  59. Rafferty NS, Rafferty KA Jr (1981) Cell population kinetics of the mouse lens epithelium. J Cell Physiol 107:309–315

    Article  CAS  PubMed  Google Scholar 

  60. McAvoy JW, Chamberlain CG (1989) Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107:221–228

    CAS  PubMed  Google Scholar 

  61. Lovicu FJ, McAvoy JW (2005) Growth factor regulation of lens development. Dev Biol 280:1–14

    Article  CAS  PubMed  Google Scholar 

  62. Maidment JM, Duncan G, Tamiya S, Collison DJ, Wang L, Wormstone IM (2004) Regional differences in tyrosine kinase receptor signaling components determine differential growth patterns in the human lens. Invest Ophthalmol Vis Sci 45:1427–1435

    Article  PubMed  Google Scholar 

  63. Iyengar L, Patkunanathan B, McAvoy JW, Lovicu FJ (2009) Growth factors involved in aqueous humour-induced lens cell proliferation. Growth Factors 27:50–62

    Article  CAS  PubMed  Google Scholar 

  64. Mendez MG, Janmey PA (2012) Transcription factor regulation by mechanical stress. Int J Biochem Cell Biol 44:728–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Bassnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Bassnett, S. (2014). Cell Biology of Lens Epithelial Cells. In: Saika, S., Werner, L., Lovicu, F. (eds) Lens Epithelium and Posterior Capsular Opacification. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54300-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54300-8_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54299-5

  • Online ISBN: 978-4-431-54300-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics