Skip to main content

Fast Photochromism of Bridged Imidazole Dimers

  • Chapter
  • First Online:

Abstract

Switching of the physical and chemical properties of materials by photochromic compounds has been the subject of considerable research. Increasing switching rates, particularly the thermal bleaching rate, is required for certain applications, such as optical data processing and light modulators. We recently developed the photochromic bridged imidazole dimers that show instantaneous coloration upon exposure to UV light and rapid fading in the dark. We designed and synthesized several bridged imidazole dimers, having a naphthalene or a [2.2]paracyclophane moiety that bridge two triphenylimidazole or diphenylimidazole units, and succeeded in accelerating the thermal bleaching rate. These photochromic compounds show photoinduced homolytic bond cleavage of the C–N bond between the imidazole rings and successive fast C–N bond formation. Rapid thermal bleaching kinetics enables a solution color change only where it is irradiated with UV light because the thermal bleaching rate is much faster than the diffusion rate of the colored species at room temperature. Photochromic materials showing such intense photocoloration and rapid thermal bleaching performance are promising materials for prospective fast light modulator applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crano JC, Guglielmetti RJ (1999) Organic photochromic and thermochromic compounds. Plenum, New York

    Google Scholar 

  2. Duerr H, Bouas-Laurent H (2003) Photochromism: molecules and systems. Elsevier, Amsterdam

    Google Scholar 

  3. Kawai T, Nakashima Y, Irie M (2005) A novel photoresponsive π-conjugated polymer based on diarylethene and its photoswitching effect in electrical conductivity. Adv Mater 17:309–314

    Article  CAS  Google Scholar 

  4. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) A digital fluorescent molecular photoswitch. Nature 420:759–760

    Article  CAS  Google Scholar 

  5. Matsuda K, Irie M (2000) A diarylethene with two nitronyl nitroxides: photoswitching of intramolecular magnetic interaction. J Am Chem Soc 122:7195–7201

    Google Scholar 

  6. Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145

    Article  CAS  Google Scholar 

  7. Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett C, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  CAS  Google Scholar 

  8. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778–781

    Article  CAS  Google Scholar 

  9. Fernandez-Acebes A, Lehn JM (1998) Optical switching and fluorescence modulation in photochromic metal complexes. Adv Mater 10:1519–1522

    Article  CAS  Google Scholar 

  10. Volodin BL, Kippelen B, Meerholz K, Javidi B, Peyghambarian N (1996) A polymeric optical pattern-recognition system for security verification. Nature 383:58–60

    Article  CAS  Google Scholar 

  11. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776

    Article  CAS  Google Scholar 

  12. Fujita K, Hatano S, Kato D, Abe J (2008) Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance. Org Lett 10:3105–3108

    Article  CAS  Google Scholar 

  13. Kishimoto Y, Abe J (2009) A fast photochromic molecule that colors only under UV light. J Am Chem Soc 131:4227–4229

    Article  CAS  Google Scholar 

  14. Hayashi T, Maeda K (1960) Preparation of a new phototropic substance. Bull Chem Soc Jpn 33:565–566

    Article  CAS  Google Scholar 

  15. Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Miyasaka H, Chosrowjan H, Taniguchi S, Mataga N, Kato D, Kikuchi A, Abe J (2007) Ultrafast laser photolysis study on photodissociation dynamics of a hexaarylbiimidazole derivative. Chem Phys Lett 448:228–231

    Article  CAS  Google Scholar 

  16. Miyasaka H, Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Taniguchi S, Chosrowjan H, Mataga N, Kato D, Kikuchi A, Abe J (2009) Ultrafast photodissociation dynamics of a hexaarylbiimidazole derivative with pyrenyl groups: dispersive reaction from femtosecond to 10 ns time regions. J Am Chem Soc 131:7256–7263

    Article  CAS  Google Scholar 

  17. White DM, Sonnenberg J (1966) Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazolyl radicals. J Am Chem Soc 88:3825–3829

    Article  CAS  Google Scholar 

  18. Riem RH, MacLachlan A, Coraor GR, Urban EJ (1971) The flash photolysis of a substituted hexaarylbiimidazole and reactions of the imidazolyl radical. J Org Chem 36:2272–2275

    Article  Google Scholar 

  19. Cescon LA, Coraor GR, Dessauer R, Silversmith EF, Urban EJ (1971) Some properties of triarylimidazolyl radicals and their dimer. J Org Chem 36:2262–2267

    Article  Google Scholar 

  20. Qin XZ, Liu A, Trifunac AD, Krongauz VV (1991) Photodissociation of hexaarylbiimidazole. 1. Triplet-state formation. J Phys Chem 95:5822–5826

    Article  CAS  Google Scholar 

  21. Kikuchi A, Iyoda T, Abe J (2002) Electronic structure of light-induced lophyl radical derived from a novel hexaarylbiimidazole with π-conjugated chromophore. Chem Commun 14:1484–1485

    Article  Google Scholar 

  22. Miyamoto Y, Kikuchi A, Iwahori F, Abe J (2005) Synthesis and photochemical properties of a photochromic iron(II) complex of hexaarylbiimidazole. J Phys Chem A 109:10183–10188

    Article  CAS  Google Scholar 

  23. Kikuchi A, Harada Y, Yagi M, Ubukata T, Yokoyama Y, Abe J (2010) Photoinduced diffusive mass transfer in o-Cl-HABI amorphous thin films. Chem Commun 46:2262–2264

    Article  CAS  Google Scholar 

  24. Nakahara I, Kikuchi A, Iwahori F, Abe J (2005) Photochromism of a novel hexaarylbiimidazole derivative having azobenzene moieties. Chem Phys Lett 402:107–110

    Article  CAS  Google Scholar 

  25. Kimoto A, Niitsu S, Iwahori F, Abe J (2009) Formation of hexaarylbiimidazole heterodimers via cross recombination of two lophyl radicals. New J Chemistry 33:1339–1342

    Article  CAS  Google Scholar 

  26. Lenderink E, Duppen K, Wiersma DA (1992) Femtosecond fragmentation of tetraphenylhydrazine in solution. Chem Phys Lett 194:403–409

    Article  CAS  Google Scholar 

  27. Meyer A, Nikowa L, Schroeder J, Schwarzer D, Thurau G (1995) Photodissociation of tetraphenylhydrazine in compressed liquid solvents. Farday Discuss 102:443–449

    Article  CAS  Google Scholar 

  28. Hirata Y, Ohta M, Okada T, Mataga N (1992) Direct observation of photodissociation of tetraphenylhydrazine and its derivatives in the solution phase: picosecond study of nitrogen-­nitrogen bond rupture in the fluorescence state. J Phys Chem 96:1517–1520

    Article  CAS  Google Scholar 

  29. Scott TW, Liu SN (1989) Picosecond geminate recombination of phenylthiyl free-radical pairs. J Phys Chem 93:1393–1396

    Article  CAS  Google Scholar 

  30. Hirata Y, Niga Y, Ohta M, Takizawa M, Okada T (1995) Photodissociation and geminate dynamics in solution phase: picosecond transient absorption studies of tetraphenylhydrazines and diphenyl disulfides. Res Chem Intermed 21:823–836

    Article  CAS  Google Scholar 

  31. Bultmann T, Ernsting NP (1996) Competition between geminate recombination and solvation of polar radicals following ultrafast photodissociation of bis(p-aminophenyl) disulfide. J Phys Chem 100:19417–19424

    Article  CAS  Google Scholar 

  32. Lochschmidt A, Eilers-König N, Heineking N, Ernsting NP (1999) Femtosecond photodissociation dynamics of bis(julolidine) disulfide in polar and apolar solvents. J Phys Chem A 103:1776–1784

    Article  CAS  Google Scholar 

  33. Kawano M, Sano T, Abe J, Ohashi Y (1999) The first in situ direct observation of the light-­induced radical pair from a hexaarylbiimidazolyl derivative by X-ray crystallography. J Am Chem Soc 121:8106–8107

    Article  CAS  Google Scholar 

  34. Abe J, Sano T, Kawano M, Ohashi Y, Matsushita MM, Iyoda T (2001) EPR and density functional studies of light-Induced radical pairs in a single crystal of a hexaarylbiimidazolyl derivative. Angew Chem Int Ed 40:580–582

    Article  CAS  Google Scholar 

  35. Kikuchi A, Iwahori F, Abe J (2004) Definitive evidence for the contribution of biradical character in a closed-shell molecule, derivative of 1,4-bis-(4,5-diphenylimidazol-2-ylidene)cyclohexa-­2,5-diene. J Am Chem Soc 126:6526–6527

    Article  CAS  Google Scholar 

  36. Iwahori F, Hatano S, Abe J (2007) Rational design of a new class of diffusion-inhibited HABI with fast back-reaction. J Phys Org Chem 20:857–863

    Article  CAS  Google Scholar 

  37. Hatano S, Fujita K, Tamaoki N, Kaneko T, Nakashima T, Naito M, Kawai T, Abe J (2011) Reversible photogeneration of a stable chiral radical-pair from a fast photochromic molecule. J Phys Chem Lett 2:2680–2682

    Article  CAS  Google Scholar 

  38. Yokoyama Y, Uchida S, Yokoyama Y, Sugawara Y, Kurita Y (1996) Diastereoselective photochromism of an (R)-binaphthol-condensed indolylfulgide. J Am Chem Soc 118:3100–3107

    Article  CAS  Google Scholar 

  39. Yokoyama Y (2000) Fulgides for memories and switches. Chem Rev 100:1717–1739

    Article  CAS  Google Scholar 

  40. Feringa BL, van Delden RA, Koumura N, Geertsema EM (2000) Chiral molecular switches. Chem Rev 100:1789–1816

    Article  CAS  Google Scholar 

  41. Pieraccini S, Masiero S, Spada GP, Gottarelli G (2003) A new axially-chiral photochemical switch. Chem Comm 39:598–599

    Article  Google Scholar 

  42. Pieraccini S, Gottarelli G, Labruto R, Masiero S, Pandoli O, Spada GP (2004) The control of the cholesteric pitch by some azo photochemical chiral switches. Chem Eur J 10:5632–5639

    Article  CAS  Google Scholar 

  43. van Delden RA, Mecca T, Rosini C, Feringa BL (2004) A chiroptical molecular switch with distinct chiral and photochromic entities and its application in optical switching of a cholesteric liquid crystal. Chem Eur J 10:61–70

    Article  Google Scholar 

  44. Wigglesworth TJ, Sud D, Norsten TB, Lekhi VS, Branda NR (2005) Chiral discrimination in photochromic helicenes. J Am Chem Soc 127:7272–7273

    Article  CAS  Google Scholar 

  45. Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71:7499–7508

    Article  CAS  Google Scholar 

  46. Carreo MC, Garca I, Nez I, Merino E, Ribagorda M, Pieraccini S, Spada GP (2007) Photoinduced conformational switch of enantiopure azobenzenes controlled by a sulfoxide. J Am Chem Soc 129:7089–7100

    Article  Google Scholar 

  47. Mathews M, Tamaoki N (2008) Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals. J Am Chem Soc 130:11409–11416

    Article  CAS  Google Scholar 

  48. Lemieux RP, Schuster GB (1993) Photochemistry of axially chiral (arylmethylene) cycloalkanes: a search for suitable photoswitchable liquid crystalline materials. J Org Chem 58:100–110

    Article  CAS  Google Scholar 

  49. Mislow K, Glass MAW, O’Brien RE, Rutkin P, Steinberg DH, Weiss J, Djerassi C (1962) Configuration, conformation and rotatory dispersion of optically active biaryls. J Am Chem Soc 84:1455–1478

    Article  CAS  Google Scholar 

  50. Mislow K, Bunnenberg E, Records R, Wellman K, Djerassi C (1963) Inherently dissymmetric chromophores and circular dichroism. II. J Am Chem Soc 85:1342–1349

    Article  CAS  Google Scholar 

  51. Scholes GD, Ghiggino KP, Oliver AM, Paddon-Row MN (1993) Through-space and through-­bond effects on exciton interactions in rigidly linked dinaphthyl molecules. J Am Chem Soc 115:4345–4349

    Article  CAS  Google Scholar 

  52. Gudipati MS (1994) Exciton, exchange, and through-bond interactions in multichromophoric molecules: An analysis of the electronic excited states. J Phys Chem 98:9750–9763

    Article  CAS  Google Scholar 

  53. Greene FD, Berwick MA, Stowell JC (1970) Stereochemistry of free-radical recombination reactions. The cage effect in decomposition of SS-(−)-azobis-cr-phenylethane. J Am Chem Soc 92:867–874

    Article  CAS  Google Scholar 

  54. Engstrom JP, Greene FD (1972) Stereochemistry of free-radical recombination reactions. The cage effect in decomposition of S-(+)-tert-butyl Z-phenylperpropionate. J Org Chem 37:968–972

    Article  CAS  Google Scholar 

  55. Garst J (1975) Diffusion model analysis of cage reactions of chiral radical pairs. J Am Chem Soc 97:5062–5065

    Article  CAS  Google Scholar 

  56. Lee KY, Horowitz N, Ware J, Singer LA (1977) Facile 1,3-rearrangement of ketenimines to nitriles. Stereochemical observations on a caged chiral radical pair. J Am Chem Soc 99:2622–2627

    Article  CAS  Google Scholar 

  57. Step EN, Buchachenko AL, Turro NJ (1992) The cage effect in the photolysis of (S)-(+)-a-­methyldeoxybenzoin: can triplet radical pairs undergo geminate recombination in nonviscous homogeneous solution? J Org Chem 57:7018–7024

    Article  CAS  Google Scholar 

  58. Turro NJ, Buchachenko AL, Tarasov VF (1995) How spin stereochemistry severely complicates the formation of a carbon–carbon bond between two reactive radicals in a supercage. Acc Chem Res 28:69–80

    Article  CAS  Google Scholar 

  59. Xu J, Weiss RG (2003) Enantioselectivity of prochiral radical-pair recombinations. Reaction cavity differentiation in polyethylene films. Org Lett 5:3077–3080

    Article  CAS  Google Scholar 

  60. Xu J, Weiss RG (2005) Analyses of in-cage singlet radical-pair motions from irradiations of 1-naphthyl (R)-1-phenylethyl ether and 1-naphthyl (R)-2-phenylpropanoate in n-alkanes. J Org Chem 70:1243–1252

    Article  CAS  Google Scholar 

  61. Resendiz MJE, Family F, Fuller K, Campos LM, Khan SI, Lebedeva NV, Forbes MDE, Garcia-­Garibay MA (2009) Radical reactions with double memory of chirality (2MOC) for the enantiospecific synthesis of adjacent stereogenic quaternary centers in solution: cleavage and bonding faster than radical rotation. J Am Chem Soc 131:8425–8433

    Article  CAS  Google Scholar 

  62. Tomasulo M, Sortino S, White AJP, Raymo FM (2005) Fast and stable photochromic oxazines. J Org Chem 70:8180–8189

    Article  CAS  Google Scholar 

  63. Tomasulo M, Sortino S, Raymo FM (2005) A fast and stable photochromic switch based on the opening and closing of an oxazine ring. Org Lett 7:1109–1112

    Article  CAS  Google Scholar 

  64. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  65. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  66. Marcus RA (1968) Theoretical relations among rate constants, barriers, and Brønsted slopes of chemical reactions. J Phys Chem 72:891–899

    Article  CAS  Google Scholar 

  67. Marcus RA (1969) Unusual slopes of free energy plots in kinetics. J Am Chem Soc 91:7224–7225

    Article  CAS  Google Scholar 

  68. Cohen AO, Marcus RA (1968) Slope of free energy plots in chemical kinetics. J Phys Chem 72:4249–4256

    Article  CAS  Google Scholar 

  69. Alabugin IV, Manoharan M, Breiner B, Lewis FD (2003) Control of kinetics and thermodynamics of [1, 5]-shifts by aromaticity: a view through the prism of Marcus theory. J Am Chem Soc 125:9329–9342

    Article  CAS  Google Scholar 

  70. Chen X, Brauman JI (2008) Hydrogen bonding lowers intrinsic nucleophilicity of solvated nucleophiles. J Am Chem Soc 130:15038–15046

    Article  CAS  Google Scholar 

  71. Harada Y, Hatano S, Kimoto A, Abe J (2010) Remarkable acceleration for back-reaction of a fast photochromic molecule. J Phys Chem Lett 1:1112–1115

    Article  CAS  Google Scholar 

  72. Mutoh K, Hatano S, Abe J (2010) An efficient strategy for enhancing the photosensitivity of photochromic [2.2]paracyclophane-bridged imidazole dimers. J Photopolym Sci Technol 23:301–306

    Article  CAS  Google Scholar 

  73. Mutoh K, Abe J (2011) Comprehensive understanding of structure-photosensitivity relationships of photochromic [2.2]paracyclophane-bridged imidazole dimers. J Phys Chem A 115:4650–4656

    Article  CAS  Google Scholar 

  74. Kimoto A, Tokita A, Horino T, Oshima T, Abe J (2010) Fast photochromic polymers carrying [2.2]paracyclophane-bridged imidazole dimer. Macromolecules 43:3764–3769

    Article  CAS  Google Scholar 

  75. Hatano S, Sakai K, Abe J (2010) Unprecedented radical-radical reaction of a [2.2]paracyclophane derivative containing an imidazolyl radical moiety. Org Lett 12:4152–4155

    Article  CAS  Google Scholar 

  76. Takizawa M, Kimoto A, Abe J (2011) Photochromic organogel based on [2.2]paracyclophane-­bridged imidazole dimer with tetrapodal urea moieties. Dyes Pigm 89:254–259

    Article  CAS  Google Scholar 

  77. Mutoh K, Abe J (2011) Photochromism of a water-soluble vesicular [2.2]paracyclophane-­bridged imidazole dimer. Chem Comm 47:8868–8870

    Article  CAS  Google Scholar 

  78. Yamashita H, Abe J (2011) Photochromic properties of [2.2]paracyclophane-bridged imidazole dimer with increased photosensitivity by introducing pyrenyl moiety. J Phys Chem A 115:13332–13337

    Article  CAS  Google Scholar 

  79. Kawai S, Yamaguchi T, Kato T, Hatano S, Abe J (2012) Entropy-controlled thermal back-­reaction of photochromic [2.2]paracyclophane-bridged imidazole dimer. Dyes Pigm 92:872–876

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to gratefully acknowledge support from the Grants-in-Aid for Scientific Research on Priority Area “New Frontiers in Photochromism” (No. 471) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Grant-in-Aid for Scientific Research (A) (22245025) of the Japan Society for the Promotion of Sciences (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Abe, J. (2013). Fast Photochromism of Bridged Imidazole Dimers. In: Irie, M., Yokoyama, Y., Seki, T. (eds) New Frontiers in Photochromism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54291-9_9

Download citation

Publish with us

Policies and ethics