Skip to main content

The Merger of Spinning Black Hole–Neutron Star Binaries

  • Chapter
  • First Online:
The Black Hole-Neutron Star Binary Merger in Full General Relativity

Part of the book series: Springer Theses ((Springer Theses))

  • 953 Accesses

Abstract

In this chapter, numerical simulations are performed for a wide range of nondimensional BH spin parameter, \(a\), as well as for a variety of the mass ratios, \(Q\). For nonspinning BH–NS binaries, we already found that the low mass ratio of \(Q \lesssim 3\) is required for tidal disruption of NSs to occur sufficiently outside the ISCO of the BH unless the EOS is extremely stiff. If the tidal disruption occurs inside or at an orbit very close to the ISCO, we do not see strong effects of the tidal disruption. In such cases, gravitational waveforms are similar to those of a BH–BH binary even in the merger phase, and the mass of the remnant disk is negligible [1]. However, the allowed range of the mass ratio for the tidal disruption is modified drastically for a BH–NS binary with the prograde BH spin [2, 3] because the ISCO radius of the BH with a prograde spin becomes smaller by a factor of 1–6 [4] than that of the nonspinning BH with the same mass. Strong spin effects for the tidal disruption are also found in the numerical-relativity simulation of the spinning BH–NS binary merger with a simplified, \(\varGamma \)-law EOS [5]. In this chapter, we perform a more systematic study of the tidal disruption for different EOSs, masses of each component, and BH spins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this thesis, “the ISCO radius” always represents “the ISCO radius in the Boyer-Lindquist coordinates,” as is described in Sect. 1.3.

  2. 2.

    We refer to \(f_{\mathrm{dam }}\) as \(f_{\mathrm{cut }}\) throughout in Chap. 6. In this chapter, we distinguish \(f_{\mathrm{dam }}\) from \(f_{\mathrm{cut }}\) because the method for determining \(f_{\mathrm{dam }}\) is different from that for \(f_{\mathrm{cut }}\).

  3. 3.

    The relation between \(f_{\mathrm{cut }} m_0\) and \(\fancyscript{C}\) is different from the one obtained in Chap. 6 due to the different definition of \(f_{\mathrm{cut }}\).

References

  1. B.D. Lackey, K. Kyutoku, M. Shibata, P.R. Brady, J.L. Friedman, Phys. Rev. D 85, 044061 (2012)

    Article  ADS  Google Scholar 

  2. M. Shibata, Prog. Theor. Phys. 96, 917 (1996)

    Article  ADS  Google Scholar 

  3. P. Wiggins, D. Lai, Astrophys. J. 532, 530 (2000)

    Article  ADS  Google Scholar 

  4. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347 (1972)

    Article  ADS  Google Scholar 

  5. Z.B. Etienne, Y.T. Liu, S.L. Shapiro, T.W. Baumgarte, Phys. Rev. D 79, 044024 (2009)

    Article  ADS  Google Scholar 

  6. L. Blanchet, Living Rev. Relativ. 9, 4 (2006)

    ADS  Google Scholar 

  7. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 82, 044049 (2010)

    Article  ADS  Google Scholar 

  8. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 049902(E) (2011)

    ADS  Google Scholar 

  9. K. Kyutoku, H. Okawa, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 064018 (2011)

    Article  ADS  Google Scholar 

  10. L.E. Kidder, Phys. Rev. D 52, 821 (1995)

    Article  ADS  Google Scholar 

  11. L.G. Fishbone, Astrophys. J. 185, 43 (1973)

    Article  ADS  Google Scholar 

  12. J.A. Marck, Proc. R. Soc. Lond. 385, 431 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Ishii, M. Shibata, Y. Mino, Phys. Rev. D 71, 044017 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. J.E. McClintock, R.A. Remillard, in Compact Stellar X-ray Sources, ed. by W.H.G. Lewin, M. van der Klis (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  15. K. Belczynski, T. Bulik, C.L. Fryer, A. Ruiter, F. Valsecchi, J.S. Vink, J.R. Hurley, Astrophys. J. 714, 1217 (2010)

    Article  ADS  Google Scholar 

  16. F. Foucart, M.D. Duez, L.E. Kidder, S.A. Teukolsky, Phys. Rev. D 83, 024005 (2011)

    Article  ADS  Google Scholar 

  17. R. Penrose, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  18. E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26, 163001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Uryū, F. Limousin, J.L. Friedman, E. Gourgoulhon, M. Shibata, Phys. Rev. Lett. 97, 171101 (2006)

    Article  ADS  Google Scholar 

  20. K. Uryū, F. Limousin, J.L. Friedman, E. Gourgoulhon, M. Shibata, Phys. Rev. D 80, 124004 (2009)

    Article  ADS  Google Scholar 

  21. M. Saijo, T. Nakamura, Phys. Rev. Lett. 85, 2665 (2000)

    Article  ADS  Google Scholar 

  22. M. Saijo, T. Nakamura, Phys. Rev. D 63, 064004 (2001)

    Article  ADS  Google Scholar 

  23. M. Punturo et al., Class. Quantum Gravity 27, 194002 (2010)

    Article  ADS  Google Scholar 

  24. L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, L. Rezzolla, Phys. Rev. Lett. 105, 261101 (2010)

    Article  ADS  Google Scholar 

  25. L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, L. Rezzolla, Phys. Rev. D 84, 024017 (2011)

    Article  ADS  Google Scholar 

  26. M. Shibata, K. Kyutoku, T. Yamamoto, K. Taniguchi, Phys. Rev. D 79, 044030 (2009)

    Article  ADS  Google Scholar 

  27. L. Rezzolla, Class. Quantum Gravity 26, 094023 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. Y. Zlochower, M. Campanelli, C.O. Lousto, Class. Quantum Gravity 28, 114015 (2011)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koutarou Kyutoku .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Kyutoku, K. (2013). The Merger of Spinning Black Hole–Neutron Star Binaries. In: The Black Hole-Neutron Star Binary Merger in Full General Relativity. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54201-8_7

Download citation

Publish with us

Policies and ethics