Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Development of efficient synthetic approaches for biologically active compounds, including natural products, is a prominent goal of modern organic chemistry. Transition-metal-catalyzed domino/cascade reactions are a useful tool for the direct construction of complicated compounds. These reactions can enhance the synthetic efficiency, and minimize the requirement for separation processes and waste production (for reviews, see Refs. [1–5]). Allenes are an important class of compounds with unique reactivity because of their cumulative double bonds. They have hybrid characteristics of an alkene and an alkyne, which makes them highly reactive toward a wide range of transition metals. Therefore, many attractive reactions of allenic compounds by transition metal catalysis have been developed (for reviews, see Refs. [6–11]); palladium-catalyzed cyclizations of allenes and related compounds have been used extensively for construction of cyclic compounds (for recent books and reviews on palladium-catalyzed cyclization of allenes, see Refs. [12–15]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reactivities of allenic and propargylic compounds are not necessarily the same. For example, propargyl bromides and carbonates are more reactive than bromoallenes toward SN2 reactions and alcoholysis, respectively [17].

References

  1. Tietze LF (1996) Chem Rev 96:115–136

    Article  CAS  Google Scholar 

  2. Tietze LF, Brasche G, Gericke K (2006) Domino reactions in organic synthesis. Wiley-VCH, Verlag GmbH, Weinheim

    Book  Google Scholar 

  3. Nicolaou KC, Edmonds DJ, Bulger PG (2006) Angew Chem Int Ed 45:7134–7186

    Article  CAS  Google Scholar 

  4. Padwa A, Bur SK (2007) Tetrahedron 63:5341–5378

    Article  CAS  Google Scholar 

  5. Poulin J, Grisé-Bard CM, Barriault L (2009) Chem Soc Rev 38:3092–3101

    Article  CAS  Google Scholar 

  6. Schuster H, Coppola G (1984) Allenes in organic synthesis. Wiley, New York

    Google Scholar 

  7. Pasto DJ (1984) Tetrahedron 40:2805–2827

    Article  CAS  Google Scholar 

  8. Hashmi ASK (2000) Angew Chem Int Ed 39:3590–3593

    Article  CAS  Google Scholar 

  9. Bates RW, Satcharoen V (2002) Chem Soc Rev 31:12–21

    Article  CAS  Google Scholar 

  10. Ma S (2003) Acc Chem Res 36:701–712

    Article  CAS  Google Scholar 

  11. Ma S (2005) Chem Rev 105:2829–2871

    Article  Google Scholar 

  12. Yamamoto Y, Radhakrishnan U (1999) Chem Soc Rev 28:199–207

    Article  CAS  Google Scholar 

  13. Zimmer R, Dinesh CU, Nandanan E, Khan FA (2000) Chem Rev 100:3067–3125

    Article  CAS  Google Scholar 

  14. Mandai T (2004) In: Krause N, Hashmi ASK (eds) Modern allene chemistry, vol 2. Wiley-VCH, Weinheim, pp 925–972

    Chapter  Google Scholar 

  15. Ohno H (2005) Chem Pharm Bull 53:1211–1226

    Article  CAS  Google Scholar 

  16. Ohno H, Hamaguchi H, Ohata M, Tanaka T (2003) Angew Chem Int Ed 42:1749–1753

    Article  CAS  Google Scholar 

  17. Ohno H, Hamaguchi H, Ohata M, Kosaka S, Tanaka T (2004) J Am Chem Soc 126:8744–8754

    Article  CAS  Google Scholar 

  18. Hamaguchi H, Kosaka S, Ohno H, Tanaka T (2005) Angew Chem Int Ed 44:1513–1517

    Article  CAS  Google Scholar 

  19. Hamaguchi H, Kosaka S, Ohno H, Fujii N, Tanaka T (2007) Chem Eur J 13:1692–1708

    Article  CAS  Google Scholar 

  20. Tsuji J, Watanabe H, Minami I, Shimizu I (1985) J Am Chem Soc 107:2196–2198

    Article  CAS  Google Scholar 

  21. Minami I, Yuhara M, Watanabe H, Tsuji J (1987) J Organomet Chem 334:225–242

    Article  CAS  Google Scholar 

  22. Tsuji J, Minami I (1987) Acc Chem Res 20:140–145

    Article  CAS  Google Scholar 

  23. Tsuji J, Mandai T (1995) Angew Chem Int Ed Engl 34:2589–2612

    Article  CAS  Google Scholar 

  24. Minami I, Yuhara M, Tsuji J (1987) Tetrahedron Lett 28:629–632

    Article  CAS  Google Scholar 

  25. Geng L, Lu X (1990) Tetrahedron Lett 31:111–114

    Article  CAS  Google Scholar 

  26. Labrosse J-R, Lhoste P, Sinou D (1999) Tetrahedron Lett 40:9025–9028

    Article  CAS  Google Scholar 

  27. Labrosse J-R, Lhoste P, Sinou D (2000) Org Lett 2:527–529

    Article  CAS  Google Scholar 

  28. Labrosse J-R, Lhoste P, Sinou D (2001) J Org Chem 66:6634–6642

    Article  CAS  Google Scholar 

  29. Zong K, Abboud KA, Reynolds JR (2004) Tetrahedron Lett 45:4973–4975

    Article  CAS  Google Scholar 

  30. Yoshida M, Higuchi M, Shishido K (2008) Tetrahedron Lett 49:1678–1681

    Article  CAS  Google Scholar 

  31. Yoshida M, Higuchi M, Shishido K (2009) Org Lett 11:4752–4755

    Article  CAS  Google Scholar 

  32. Bi H-P, Liu X-Y, Gou F-R, Guo L-N, Duan X-H, Shu X-Z, Liang Y-M (2007) Angew Chem Int Ed 46:7068–7071

    Article  CAS  Google Scholar 

  33. Ren Z-H, Guan Z-H, Liang Y-M (2009) J Org Chem 74:3145–3147

    Article  CAS  Google Scholar 

  34. Gou F-R, Huo P-F, Bi H-P, Guan Z-H, Liang Y-M (2009) Org Lett 11:3418–3421

    Article  CAS  Google Scholar 

  35. Kozawa Y, Mori M (2001) Tetrahedron Lett 42:4869–4873

    Article  CAS  Google Scholar 

  36. Kozawa Y, Mori M (2002) Tetrahedron Lett 43:1499–1502

    Article  CAS  Google Scholar 

  37. Kozawa Y, Mori M (2003) J Org Chem 68:8068–8074

    Article  CAS  Google Scholar 

  38. Yoshida M, Morishita Y, Fujita M, Ihara M (2004) Tetrahedron Lett 45:1861–1864

    Article  CAS  Google Scholar 

  39. Ambrogio I, Cacchi S, Fabrizi G (2006) Org Lett 8:2083–2086

    Article  CAS  Google Scholar 

  40. Ambrogio I, Cacchi S, Fabrizi G, Prastaro A (2009) Tetrahedron 65:8916–8929

    Article  CAS  Google Scholar 

  41. Cacchi S, Fabrizi G, Filisti, E (2009) Synlett 1817–1821

    Google Scholar 

  42. Duan X-H, Guo L-N, Bi H-P, Liu X-Y, Liang Y-M (2006) Org Lett 8:5777–5780

    Article  CAS  Google Scholar 

  43. Guo L-N, Duan X-H, Bi H-P, Liu X-Y, Liang Y-M (2007) J Org Chem 72:1538–1540

    Article  CAS  Google Scholar 

  44. Bi H-P, Guo L-N, Gou F-R, Duan X-H, Liu X-Y, Liang Y-M (2008) J Org Chem 73:4713–4716

    Article  CAS  Google Scholar 

  45. Yoshida M, Ihara M (2001) Angew Chem Int Ed 40:616–619

    Article  CAS  Google Scholar 

  46. Yoshida M, Fujita M, Ishii T, Ihara M (2003) J Am Chem Soc 125:4874–4881

    Article  CAS  Google Scholar 

  47. Ohno H, Okano A, Kosaka S, Tsukamoto K, Ohata M, Ishihara K, Maeda H, Tanaka T, Fujii N (2008) Org Lett 10:1171–1174

    Article  CAS  Google Scholar 

  48. Okano A, Tsukamoto K, Kosaka S, Maeda H, Oishi S, Tanaka T, Fujii N, Ohno H (2010) Chem Eur J 16:8410–8418

    Article  CAS  Google Scholar 

  49. Okano A, Oishi S, Tanaka T, Fujii N, Ohno H (2010) J Org Chem 75:3396–3400

    Article  CAS  Google Scholar 

  50. Davies IW, Scopes DIC, Gallagher T (1993) Synlett 85–87

    Google Scholar 

  51. Kang S-K, Baik T-G, Kulak AN (1999) Synlett 324–326

    Google Scholar 

  52. Rutjes FPJT, Tjen KCMF, Wolf LB, Karstens WFJ, Schoemaker HE, Hiemstra H (1999) Org Lett 1:717–720

    Article  CAS  Google Scholar 

  53. Ohno H, Toda A, Miwa Y, Taga T, Osawa E, Yamaoka Y, Fujii N, Ibuka T (1999) J Org Chem 64:2992–2993

    Article  CAS  Google Scholar 

  54. Kang S-K, Baik T-G, Hur Y (1999) Tetrahedron 55:6863–6870

    Article  CAS  Google Scholar 

  55. Anzai M, Toda A, Ohno H, Takemoto Y, Fujii N, Ibuka T (1999) Tetrahedron Lett 40:7393–7397

    Article  CAS  Google Scholar 

  56. Kang S-K, Kim K-J (2001) Org Lett 3:511–514

    Article  CAS  Google Scholar 

  57. Hiroi K, Hiratsuka Y, Watanabe K, Abe I, Kato F, Hiroi M (2001) Synlett 263–265

    Google Scholar 

  58. Ohno H, Anzai M, Toda A, Oishi S, Fujii N, Tanaka T, Takemoto Y, Ibuka T (2001) J Org Chem 66:4904–4914

    Article  CAS  Google Scholar 

  59. Grigg R, Köppen I, Rasparini M, Sridharan V (2001) Chem Commun 964–965

    Google Scholar 

  60. Hiroi K, Hiratsuka Y, Watanabe K, Abe I, Kato F, Hiroi M (2002) Tetrahedron Asymm 13:1351–1353

    Article  CAS  Google Scholar 

  61. Watanabe K, Hiroi K (2003) Heterocycles 59:453–457

    Article  CAS  Google Scholar 

  62. Grigg R, Inman M, Kilner C, Köppen I, Marchbank J, Selby P, Sridharan V (2007) Tetrahedron 63:6152–6169

    Article  CAS  Google Scholar 

  63. Okano A, Mizutani T, Oishi S, Tanaka T, Ohno H, Fujii N (2008) Chem Commun 3534–3536

    Google Scholar 

  64. Cheng X, Ma S (2008) Angew Chem Int Ed 47:4581–4583

    Article  CAS  Google Scholar 

  65. Beccalli EM, Broggini G, Clerici F, Galli S, Kammerer C, Rigamonti M, Sottocornola S (2009) Org Lett 11:1563–1566

    Article  CAS  Google Scholar 

  66. Shu W, Ma S (2009) Chem Commun 6198–6200

    Google Scholar 

  67. Beccalli EM, Bernasconi A, Borsini E, Broggini G, Rigamonti M, Zecchi G (2010) J Org Chem 75:6923–6932

    Article  CAS  Google Scholar 

  68. Shimizu I, Tsuji J (1984) Chem Lett 233–236

    Google Scholar 

  69. Larock RC, Berrios-Peña NG, Fried CA (1991) J Org Chem 56:2615–2617

    Article  CAS  Google Scholar 

  70. Karstens WFJ, Rutjes FPJT, Hiemstra H (1997) Tetrahedron Lett 38:6275–6278

    Article  CAS  Google Scholar 

  71. Karstens WFJ, Stol M, Rutjes FPJT, Hiemstra H (1998) Synlett 1126–1128

    Google Scholar 

  72. Ma S, Gao W (2002) Org Lett 4:2989–2992

    Article  CAS  Google Scholar 

  73. Ma S, Yu F, Gao W (2003) J Org Chem 68:5943–5949

    Article  CAS  Google Scholar 

  74. Ma S, Yu F, Li J, Gao W (2007) Chem Eur J 13:247–254

    Article  Google Scholar 

  75. Stevens RR, Shier GD (1970) J Organometal Chem 21:495–499

    Article  CAS  Google Scholar 

  76. Lathbury D, Vernon P, Gallagher T (1986) Tetrahedron Lett 27:6009–6012

    Article  CAS  Google Scholar 

  77. Prasad JS, Liebeskind LS (1988) Tetrahedron Lett 29:4257–4260

    Article  CAS  Google Scholar 

  78. Fox DNA, Lathbury D, Mahon MF, Molloy KC, Gallagher T (1991) J Am Chem Soc 113:2652–2656

    Article  CAS  Google Scholar 

  79. Kimura M, Fugami K, Tanaka S, Tamaru Y (1992) J Org Chem 57:6377–6379

    Article  CAS  Google Scholar 

  80. Kimura M, Tanaka S, Tamaru Y (1995) J Org Chem 60:3764–3772

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Inuki .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Inuki, S. (2012). Introduction. In: Total Synthesis of Bioactive Natural Products by Palladium-Catalyzed Domino Cyclization of Allenes and Related Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54043-4_1

Download citation

Publish with us

Policies and ethics