Skip to main content

Decomposition and Argument Reduction of Neural Networks

  • Conference paper
Neural Networks and Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 19))

Abstract

The article presents methods of dealing with huge data in the domain of neural networks. The decomposition of neural networks is introduced and its efficiency is proved by the authors’ experiments. The examinations of the effectiveness of argument reduction in the above filed, are presented. Authors indicate, that decomposition is capable of reducing the size and the complexity of the learned data, and thus it makes the learning process faster or, while dealing with large data, possible. According to the authors’ experiments, in some cases, argument reduction, makes the learning process harder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Ashenhurst, The Decomposition of Switching Functions, Proc. Int. Symp. of Theory. of Switching, 1957.

    Google Scholar 

  2. S. Chang, M. Marek-Sadowska, T. Hwang, Technology mapping for TLU FPGA’s based on decomposition of Binary Decision Diagrams, IEEE Transaction on Computers, vol. 15, No. 10, 1996.

    Google Scholar 

  3. H. A. Curtis, A New Approach to the Design of Switching Circuits, Princeton, N.J., Van Nostrand, 1962.

    Google Scholar 

  4. S. Y. Kung, Digital Neural Networks, PTR Prentice Hall, 1993.

    Google Scholar 

  5. Y. Lai, K. Pan, M. Pedram, OBDD-based functional decomposition: algorithms and implementation, IEEE Transaction on Computers, vol. 15, No. 8, 1996.

    Google Scholar 

  6. Y. Lai, M. Pedram, S. Vrudhula, EVOBDD-based algorithms for integer linear programming, spectral transformation, and functional decomposition, IEEE Transaction on Computers, vol. 13, No. 8, 1994.

    Google Scholar 

  7. T. Luba, Decomposition of multiple-valued functions, Proc. IEEE-ISMVL, USA, 1995.

    Google Scholar 

  8. T. Luba, C. Moraga, S. Yanushkevich, M. Opoka, V. Shmerko Evolutionary Multi-Level Network Synthesis in Given Design Style, Proc. IEEE-ISMVL, Portland, Oregon, USA, 2000.

    Google Scholar 

  9. T. Luba, H. Niewiadomski, H. Pleban, H. Selvaraj, P. Sapiecha, Functional decomposition and its application in design of digital circuits and machine learning, TASTED Inter. Conf. On Applied Informatics, Innsbruck, Austria, 2001.

    Google Scholar 

  10. T. Masters, Neural Networks in Practice, Prentice-Hall, 1996.

    Google Scholar 

  11. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer, 1991

    Book  MATH  Google Scholar 

  12. M. Perkowski, R. Malvi, S. Grygiel, M. Burns, A. Mishchenko, Graph coloring algorithms for fast evaluation of Curtis decomposifons, DAC, 1999.

    Google Scholar 

  13. P. Sapiecha, H. Selvaraj, M. Pleban, Decomposition of Boolean Relations and Functions in Logic Synthesis and Data Analysis, The Second International Conference on Rough Sets and Current Trends in Computing, Banff, Canada, 2000.

    Google Scholar 

  14. H. Selvaraj, H. Niewiadomski, M. Pleban, P. Sapiecha, Decomposition of Digital Circuits and Neural Networks, Proc. SCI 2001, US, 2001.

    Google Scholar 

  15. A. Skowron, C. Rauszer, The discemibility matrices and functions in information systems in: R. Slowinski (Ed.), Intelligent Decision Support. Handbook of Applications and Advances on the Rough Set Theory, Kluwer, 1992

    Google Scholar 

  16. C. Yang, V. Singhal, M. Ciesielski, BDD decomposition for efficient logic synthesis, International Conference on Computer Design, 1999.

    Google Scholar 

  17. W. Wan, M. Perkowski, A New Approach to the Decomposition of Incompletely Specified Multi-Output Function Based on Graph Coloring and Local Transformations and Its Application to FPGA Mapping, Proc. Euro-DAC’92.,1992.

    Google Scholar 

  18. D. de Werra, Heuristics for Graph Coloring, Computational Graph Theory, Tinhofer, Mayr, Noltenmeier, Syslo (Eds.), Springer-Verlag, New York, 1990.

    Google Scholar 

  19. http://www-ra.informatik.untuebingen.deSNNS/

    Google Scholar 

  20. B. Zupan, M. Bohanec, J. Demlar, I. Bratko, Feature transformation by function decomposition, IEEE Expert, Special Issue on Feature Transformation. 1997.

    Google Scholar 

  21. J. M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company, St. Paul, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buciak, P., Łuba, T., Niewiadomski, H., Pleban, M., Sapiecha, P., Selvaraj, H. (2003). Decomposition and Argument Reduction of Neural Networks. In: Rutkowski, L., Kacprzyk, J. (eds) Neural Networks and Soft Computing. Advances in Soft Computing, vol 19. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1902-1_125

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1902-1_125

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0005-0

  • Online ISBN: 978-3-7908-1902-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics