Skip to main content

Suppression of hydroxyl radical formation by MAO inhibitors: a novel possible neuroprotective mechanism in dopaminergic neurotoxicity

  • Conference paper
Amine Oxidases: Function and Dysfunction

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 41))

Summary

Prior studies concluded that 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP, a toxin causing parkinsonism) and its analogues are bioactivated by monoamine oxidase (MAO) to toxic pyridinium metabolites. Recently, a dissociation between the neuroprotective effects of deprenyl and its MAO inhibiting effects has been proposed. Furthermore, we have demonstrated that pyridinium metabolites of MPTP stimulate dopamine efflux and the formation of cytotoxic hydroxyl free radicals (OH) in the striatum. Therefore, we investigated possible neuroprotective mechanisms of propargyl MAO inhibitors by studying their effects on the formation of oxygen free radicals produced by dopamine autoxidation. Our recent in vivo results indicate that deprenyl and clorgyline given systemically suppressed the generation of OH that followed administration of 2’-methyl-MPTP. Combined deprenyl and clorgyline pretreatment are needed to block dopamine neurotoxicity elicited by 2’-methyl-MPTP. The present in vitro studies reveal that propargyl MAO inhibitors suppress non-enzymatic dopamine autoxidation and associated free radical production. Thus, OH generation evoked by MPTP analogues may be due mainly to a burst increase in iron-catalyzed autoxidation of released dopamine in the basal ganglia where high levels of iron and oxygen are present. Our present in vitro and prior in vivo results suggest that a novel antioxidant property of propargyl MAO inhibitors may contribute to protection against nigral lesions elicited by dopamine autoxidation following the administration of MPTP analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine. Proc Natl Acad Sci USA 80: 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Riederer P, Youdim MBH (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57: 1609–1614.

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Martin J (1985) Improvement of life expectancy due to l-deprenyl addition to madopar treatment in Parkinson’s disease: a long term study. J Neural Transm 64: 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC (1988) Dopamine in the extrapyramidal motor function: a study based upon the MPTP-induced primate model of parkinsonism. Ann NY Acad Sci 515: 226–238.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Huang S-J, Murphy DL (1992a) Enhanced hydroxyl radical generation by 2’-methyl analog of MPTP: suppression by clorgyline and deprenyl. Synapse 11: 346–348.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang S-J, Murphy DL (1992b) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autoxidation in the caudate nucleus: effects of MPP+. Free Radic Biol Med 13: 581–583.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Miyake H, Peng MT (1993a) Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Parkinson’s disease: from basic research to treatment. Raven Press, New York, pp 251–258 (Adv Neurol 60).

    Google Scholar 

  • Chiueh CC, Murphy L, Miyake H, Lang K, Tulsi PK, Huang S-J (1993b) Hydroxyl free radicals (OH) formation reflected by salicylate hydroxylation and neuro-melanin: in vivo markers for oxidant injury of nigral neurons. Ann NY Acad Sci 629: 370–375.

    Article  Google Scholar 

  • Cleeter MWJ, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58: 786–789.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, Yahr MD (1984) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106: 209–210.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G (1988) Oxygen radicals and Parkinson’s disease. In: Halliwell B (ed) Oxygen radicals and tissue injury. FASEB, Bethesda, pp 130–135.

    Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson J, LaBella FS, Gesser D (1981) Enhanced autoxidation of dopamine as a possible basis of manganese neurotoxicity. Neurotoxicology 2: 53–64.

    PubMed  CAS  Google Scholar 

  • Fornstedt B, Brun A, Rosengren E, Carlsson A (1989) The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm [PD Sect] 1: 279–295.

    Article  CAS  Google Scholar 

  • Fornstedt B, Pileblad E, Carlsson A (1990) In vivo autoxidation of dopamine in guinea pig striatum increases with age. J Neurochem 55: 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Freisleben H-J, Lehr F, Fuchs J (1992) Lifespan of NMRI-mice is increased by deprenyl. Proceedings Int Amine Oxidase Workshop 5: 12 (Abst. #B02).

    Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuro-melanin and cytotoxic quinones. Mol Pharmacol 14: 633–643.

    PubMed  CAS  Google Scholar 

  • Graham DG (1984) Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease. Neurotoxicology 5: 83–96.

    PubMed  CAS  Google Scholar 

  • Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions, is oxidant damage relevant to parkinson’s disease, Alzheimer’s disease, traumatic injury, or stroke?. Acta Neurol Scand 126: 23–33.

    Article  CAS  Google Scholar 

  • Heikkila RE, Kindt MV, Sonsalla PK, Giovanni A, Youngster SK, McKeown KA, Singer TP (1988) Importance of monoamine oxidase A in the bioactivation of neurotoxic analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydrophyridine. Proc Natl Acad Sci USA 85: 6172–6176.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Dexter DT, Schapira AHV, Marsden CD (1990) Free radical involvement and altered iron metabolism as a cause of Parkinson’s disease. In: Marsden CD, Fahn S (eds) The assessment and therapy of parkinsonism. Parthenon Publishing Group, New Jersey, pp 17–30.

    Google Scholar 

  • Knoll J (1989) The pharmacology of selegiline [(—)deprenyl]: new aspects. Acta Neurol Scand 126: 83–91.

    Article  CAS  Google Scholar 

  • Magyar K, Tothfalusi L, Lengyel J, Gaal J (1992) Neuroprotective effect of deprenyl and p-fluoro-deprenyl against DSP-4 toxicity. Neurochem Int 21: D92 (abstract).

    Google Scholar 

  • Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA (1984) Intra-neuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311: 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Sunderland T (1993) Monoamine oixdase inhibitors in neurodegenerative disorders. In: Kennedy SH (ed) Clinical advances in monoamine oxidase inhibitor therapies. American Psychiatric Press, Washington (in press).

    Google Scholar 

  • Mytilineou C, Cohen G (1985) Deprenyl protects dopamine neurons from the neurotoxic effects of 1-methyl-4-phenylpyridinium ion. J Neurochem 5: 1951–1953.

    Article  Google Scholar 

  • Obata T, Chiueh CC (1992) In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+ and MPP+. J Neural Transm [Gen Sect] 89: 139–145.

    Article  CAS  Google Scholar 

  • Parkinson Study Group (1989) Effects of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321: 1364–1371.

    Article  Google Scholar 

  • Poirier J, Donaldson J, Barbeau A (1985) The specific vulnerability of the substantia nigra to MPTP is related to the presence of transition metals. Biochem Biophys Res Commun 128: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch W-D, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in park-insonian brains. J Neurochem 52: 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Roytta M, Paljarvi L, Rumnukainen J, Rinne UK (1991) Selegiline (deprenyl) treatment and death of nigral neurons in Parkinson’s disease. Neurology 41: 859–861.

    PubMed  CAS  Google Scholar 

  • Salo PT, Tatton WG (1991) Deprenyl reduces death of motoneurons caused by axotomy. J Neurosci Res 31: 1–7.

    Google Scholar 

  • Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86: 1398–1400.

    Article  PubMed  CAS  Google Scholar 

  • Sziraki I, Kardos V, Patthy M, Patfalusi M, Gaal J, Sloti M, Kollar E (1992) Complex mode of action of deprenyl in protection against MPTP-parkinsonism in mice. Neurochem Int 21: D69 (abstract).

    Article  Google Scholar 

  • Tariot PN, Sunderland T, Weingartner H, Murphy DL, Welkowitz JA, Thompson K, Coen RM (1987) Cognitive effects of l-deprenyl in Alzheimer’s disease. Psycho-pharmacology 91: 489–495.

    CAS  Google Scholar 

  • Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–672.

    Article  PubMed  CAS  Google Scholar 

  • Wu R-M, Chiueh CC, Murphy DL (1993) Apparent antioxidant effect of 1-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Chiueh, C.C., Huang, SJ., Murphy, D.L. (1994). Suppression of hydroxyl radical formation by MAO inhibitors: a novel possible neuroprotective mechanism in dopaminergic neurotoxicity. In: Tipton, K.F., Youdim, M.B.H., Barwell, C.J., Callingham, B.A., Lyles, G.A. (eds) Amine Oxidases: Function and Dysfunction. Journal of Neural Transmission, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9324-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9324-2_25

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82521-1

  • Online ISBN: 978-3-7091-9324-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics