Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 1193 Accesses

Abstract

Over the past decade, the downward scaling of device dimensions has resulted in a reduction in gate-oxide thickness by a factor of four. While scaling continued, the supply voltage remained constant (normally 5 V) due to the constraints of retaining compatibility with existing systems. This has resulted in increased vertical electric fields in the oxide which have already reached above 1 MV/cm in thin oxides. The scaling of channel length, meanwhile, has lead to large lateral electric field in the channel. In spite of reducing the supply voltage to 3.3 V, a strong push still remains towards higher channel electric field as scaling continues. The increased channel electric field has caused hot-carrier effects that are becoming a limiting factor in realizing submicron level VLSI. This is because hot-carrier effects impose more severe constraints on VLSI device design as device dimensions are reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. R. Troutman, ’Low-level avalanche multiplication in IGFETs’, IEEE Trans. Electron Devices, ED-23, pp. 419–425 (1976).

    Article  Google Scholar 

  2. Y. A. El-Mansy and D. M. Caughey, ’Modeling weak avalanche multiplication currents in IGFETS and SOS transistors for CAD’, IEEE IEDM-75, Dig. Tech. Papers ,pp. 31–34 (1975).

    Google Scholar 

  3. S. Selberherr, Analysis and Simulation of Semiconductor Devices ,Springer-Verlag, Wien, New-York, 1984.

    Book  Google Scholar 

  4. J. W. Slotboom, G. Streutker, G. J. T. Davids, and P. B. Hartog, ’Surface impact ionization in silicon devices’, IEEE IEDM-87, Dig. Tech. Papers ,pp. 494–497 (1987).

    Google Scholar 

  5. A. Erdelyi, Asymptotic Expansions ,Dover Publications Inc, New York, 1956.

    MATH  Google Scholar 

  6. C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan, and K. W. Terrill, ’Hot-electron induced MOSFET degradation-model, monitor, and improvement’, IEEE Trans. Electron Devices, ED-32, pp. 375–385 (1985).

    Google Scholar 

  7. C. Hu, ’Hot carrier effects’, in Advanced MOS Device Physics (N. G. Einspruch and G. Gildenblat, eds.), VLSI Electronics Vol.18, pp. 119–139, Academic Press Inc., New York, 1989.

    Google Scholar 

  8. M. M. Kuo, K. Seki, P. M. Lee, J. Y. Choi, P. K. Ko, and C. Hu, ’Simulation of MOSFET lifetime under AC hot-electron stress’, IEEE Trans. Electron Devices, ED-35, pp. 1004–1010 (1988).

    Article  Google Scholar 

  9. T.-C. Ong, P. K. Ko, and C. Hu, ’Modeling of substrate current in p-MOSFET’s’, IEEE Trans. Electron Device Lett., EDL-8, pp. 413–416 (1987).

    Article  Google Scholar 

  10. J. Chung, M. C. Jeng, G. May, P. K. Ko, and C. Hu, ’Hot-electron currents in deepsubmicrometer MOSFETs’, IEEE IEDM-88, Dig. Tech. Papers ,pp. 200–203 (1988).

    Google Scholar 

  11. Y. Tang, D. M. Kim, Y.-H. Lee, and B. Sabi, ’Unified characterization of two-region gate bias stress in submicrometer p-channel MOSFETs’, IEEE Electron Device Lett., EDL-11, pp. 203–205 (1990).

    Article  Google Scholar 

  12. J. Faricelli and G. Gildenblat, ’Numerical verification of substrate current model in silicon IGFET’s’, Solid-State Electron., 30, pp. 655–660 (1987).

    Article  Google Scholar 

  13. J. Mar, S. S. Li, and S. Y. Yu, ’Substrate current modeling for circuit simulation’, IEEE Trans. Computer-Aided Design, CAD-1, pp. 183–186 (1982).

    Article  Google Scholar 

  14. Y. W. Sing and B. Sudlow, ’Modeling and VLSI design constraints of substrate current’, IEEE IEDM-80, Dig. Tech. Papers ,pp. 732–735 (1980).

    Google Scholar 

  15. T. Sakurai, K. Nogami, M. Kakumu, and T. Iizuka, ’Hot-carrier generation in sub-micrometer VLSI environment’, IEEE J. Solid-State Circuits, SC-22, pp. 256–259 (1987).

    Google Scholar 

  16. T. Y. Chan, P. K. Ko, and C. Hu, ’A simple method to characterize substrate current in MOSFETs’, IEEE Trans. Electron Device Lett., EDL-5, pp. 505–507 (1984).

    Article  Google Scholar 

  17. T. Y. Chan, P. K. Ko, and C. Hu, ’Dependence of channel electric field in device scaling’, IEEE Electron Device Lett., EDL-6, pp. 551–553 (1985).

    Article  Google Scholar 

  18. N. D. Arora and M. Sharma, ’MOSFET substrate current model for circuit simulation’, IEEE Trans. Electron Devices, ED-38, pp. 1392–1398 (1991).

    Article  Google Scholar 

  19. Y. Tang, D. M. Kim, ’Modeling of on-state MOSFET operation and derivation of maximum channel field’, IEEE Trans. Electron Devices, ED-38, pp. 2472–2480(1991).

    Article  Google Scholar 

  20. W. Shockley, ’Problems related to pn junction in silicon’, Solid-State Electron., 2, pp. 35–67 (1961).

    Article  Google Scholar 

  21. J. F. Verwey, R. P. Kramer, and B. J. de Maagt, ’Mean free path of hot electrons at the surface of boron doped silicon’, J. Appl. Phys., 46, pp. 2612–2619 (1975).

    Article  Google Scholar 

  22. T. H. Ning, C. M. Osburn, and H. N. Yu, ’Emission probability of hot electrons from silicon into silicon dioxide’, J. Appl. Phys., 48, pp. 286–293 (1977).

    Article  Google Scholar 

  23. S. Tam, P. K. Ko, and C. Hu, ’Lucky-electron model of channel hot electron injection in MOSFETs’, IEEE Trans. Electron Devices, ED-31, pp. 1116–1125 (1984).

    Google Scholar 

  24. T.-C. Ong, P. K. Ko, and C. Hu, ’Hot-carrier current modeling and device degradation in surface-channel p-MOSFETs’, IEEE Trans. Electron Devices, ED-37, pp. 1658–1666 (1990).

    Article  Google Scholar 

  25. P. E. Cottrell, R. R. Troutman, and T. H. Ning, ’Hot-electron emission in n-channel IGFETs’, IEEE Trans. Electron Devices, ED-26, pp. 520–533 (1979).

    Article  Google Scholar 

  26. E. Takeda, H. Kume, T. Toyabe, and S. Asai, ’Submicrometer MOSFET structure for minimizing hot-carrier generation’, IEEE Trans. Electron Devices, ED-29, pp. 611– 618 (1982).

    Article  Google Scholar 

  27. K. R. Hofmann, C. Werner, W. Weber, and G. Dorda, ’Hot-electron and hole-emission effects in short n-channel MOSFETs’, IEEE Trans. Electron Devices, ED-32, pp. 691–699 (1985).

    Article  Google Scholar 

  28. M. Miura-Mattausch, A. V. Schweri, W. Weber, C. Werner, and G. Dorda, ’Gate currents in thin oxide MOSFETs’, IEE Proceedings, 134, Pt. I, pp. 111–115 (1987).

    Google Scholar 

  29. E. Takeda, ’Hot-carrier effects in submicrometer MOS VLSI’, IEE Proceedings, 131, Pt. I, pp. 153–164(1984).

    Google Scholar 

  30. N. S. Saks, P. L. Heremans, L. Van den Hove, H. E. Maes, R. F. De Keersmaecker, and G. J. Declerck, ’Observation of hot-hole injection in NMOS transistors using a modified floating gate technique’, IEEE Trans. Electron Devices, ED-33, pp. 1529– 1534 (1986).

    Article  Google Scholar 

  31. K. K. Ng and G. W. Taylor, ’Effects of hot-carrier trapping in n- and p-channel MOSFETs’, IEEE Trans. Electron Devices, ED-30, pp. 871–876 (1983).

    Article  Google Scholar 

  32. T. Tsuchiya and J. Frey, ’Relationship between hot-electrons/holes and degradation for p- and n-channel MOSFETS’, IEEE Electron Device Lett., EDL-6, pp. 8–11 (1985).

    Article  Google Scholar 

  33. M. Koyanagi, A. G. Lewis, J. Zhu, R. A. Martin, T. Y. Huang, and J. Y. Chen, ’Hot electron induced punchthrough (HEIP) effect in submicron PMOSFETs’, IEEE Trans. Electron Devices, ED-34, pp. 839–844 (1987).

    Article  Google Scholar 

  34. S. Tam, P. K. Ko, C. Hu, and R. S. Muller, ’Correlation between substrate and gate currents in MOSFETs’, IEEE Trans. Electron Devices, ED-29, pp. 1740–1744 (1982)

    Article  Google Scholar 

  35. S. Tanaka and S. Watanabe, ’A model for the relation between substrate and gate currents in n-channel MOSFETs’, IEEE Trans. Electron Devices, ED-30, pp. 668–675 (1983).

    Article  Google Scholar 

  36. E. Takeda, A. Shimizu, and T. Hagiwara, ’Role of hot-hole injection in hot-carrier effects and the small degraded channel region in MOSFETs’, IEEE Electron Device Lett., EDL-4, pp. 329–331 (1983).

    Article  Google Scholar 

  37. T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H.-N. Yu, ’1 µm MOSFET VLSI technology: Part IV: Hot-electron design constraints, IEEE Trans. Electron Devices, ED-26, pp. 346–353 (1979).

    Article  Google Scholar 

  38. T. Tsuchiya, Y. Okazaki, M. Miyaka, and T. Kobayashi, ’New hot-carrier degradation mode in lifetime prediction method in quarter-micrometer PMOSFET’, IEEE Trans. Electron Devices, ED-39, pp. 404–408 (1992).

    Article  Google Scholar 

  39. E. Takeda and N. Suzuki, ’An empirical model for device degradation due to hot-carrier injection’, IEEE Electron Device Lett., EDL-4, pp. 111–113 (1983).

    Article  Google Scholar 

  40. C. Yao, J. Tzou, and R. Cheung, ’Temperature dependence of CMOS device reliability’, IEEE IRPS-86, Tech. Dig. , 175–182 (1986).

    Google Scholar 

  41. W. Weber, C. Werner, and A. Schwerin, ’Lifetimes and substrate currents in static and dynamic hot carrier degradation’, IEE-IEDM86, Tech. Dig. ,pp. 390–393 (1986).

    Google Scholar 

  42. K. R. Mistry and B. S. Doyle, ’An empirical model for the Leff dependence of hot-carrier lifetimes of n-channel MOSFETs’, Electron Device Letters, EDL-10, pp. 500–502 (1989).

    Article  Google Scholar 

  43. B. S. Doyle and K. R. Mistry, ’A lifetime prediction method for hot-carrier degradation in surface-channel p-MOS devices’, IEEE Trans. Electron Devices, ED-37, pp. 1301– 1307 (1990).

    Article  Google Scholar 

  44. M. Brox, E. Wohlrab, and W. Weber, ’A physical lifetime prediction method for hot-carrier-stressed p-MOS transistors’, IEEE IEDM-91, Tech. Dig. ,pp. 525–528 (1988).

    Google Scholar 

  45. W. Weber and F. Lau, ’Hot-carrier drifts in submicrometer p-channel MOSFETs’, IEEE Electron Device Lett., EDL-8, pp. 208–211 (1987).

    Article  Google Scholar 

  46. M. P. Brassington, M. W. Poulter, and M. El-Diwanay, ’Suppression of hot-carrier effects in submicrometer surface-channel PMOSFETs’, IEEE Trans. Electron Devices, ED-35, p. 1149(1988).

    Article  Google Scholar 

  47. T.-C. Ong, K. Seki, P. K. Ko, and C. Hu, ’Hot-carrier-induced degradation in p- MOSFET’s under AC stress’, IEEE Trans. Electron Device Lett., EDL-9, pp. 211–213 (1988).

    Article  Google Scholar 

  48. K. L. Chen, S. Sailer, and R. Shah, ’The case of AC stress in the hot carrier effect’, IEEE Trans. Electron Devices, ED-33, pp. 424–426 (1986).

    Article  Google Scholar 

  49. J. Y. Choi, P. K. Ko, and C. Hu, ’Hot-carrier-induced MOSFET degradation under AC stress’, IEEE Electron Device Letters, EDL-8, pp. 333–335 (1987).

    Article  Google Scholar 

  50. H. Wang, M. Davis, and R. Lahri, ’Transient substrate current effects on n-channel MOSFET device lifetime’, IEEE IEDM-88, Tech. Dig. ,pp. 216–219 (1988).

    Google Scholar 

  51. H. Wang, S. Bibyk, M. Davis, H. De, and Y. Nissan-Cohen, ’Transient hot-electron effect on n-channel device degradation’, IEEE IEDM-89, Tech. Dig. ,pp. 79–83 (1989).

    Google Scholar 

  52. R. Bellens, P. Heremans, G. Groenseneken, and H. E. Maes, ’Analysis of the mechanisms for the enhanced degradation during AC hot carrier stress of MOSFETs’, IEEE IEDM-88, Tech. Dig. ,pp. 212–215 (1988).

    Google Scholar 

  53. W. Hansch and W. Weber, ’The effect of transients on hot carriers’, IEEE Electron Device Letters, EDL-10, pp. 252–255 (1989).

    Article  Google Scholar 

  54. R. Bellens, P. Heremans, G. Groeseneken, H. E. Maes, and W. Weber, ’The influence of measurement setup on enhanced AC hot carrier degradation of MOSFETs’, IEEE Trans. Electron Devices, ED-37, pp. 310–313 (1990).

    Article  Google Scholar 

  55. K. R. Mistry and B. S. Doyle, ’The role of electron trap creation in enhanced hot-carrier degradation during AC stress’, IEEE Electron Device Letters, EDL-11, pp. 267–269 (1990).

    Article  Google Scholar 

  56. B. S. Doyle, M. Bourecerie, C. Bergonzoni, R. Benecchi, A. Bravis, K. R. Mistry, and A. Boudou, ’The generation and characterization of electron and hole traps created by hole injection during low gate voltage hot-carrier stressing of n-MOS transistors’, IEEE Trans. Electron Devices, ED-37, pp. 1869–1876 (1990).

    Article  Google Scholar 

  57. K. R. Mistry and B. S. Doyle, ’A model for AC hot-carrier degradation in n-channel MOSFETs’, Electron Device Letters, EDL-12, pp. 492–494 (1991).

    Article  Google Scholar 

  58. K. R. Mistry, B. S. Doyle, A. Philipossian, and D. B. Jackson, ’AC hot carrier lifetimes in oxide and ROXNOX n-channel MOSFETs’, IEEE-IEDM91, Tech. Dig. ,pp. 727–730 (1991).

    Google Scholar 

  59. P. M. Lee, M. M. Kuo, K. Seki, P. K. Ko, and C. Hu, ’Circuit aging simulator (CAS)’, IEEE-IEDM88, Tech. Dig. ,pp. 134–138 (1988).

    Google Scholar 

  60. P. M. Lee, M. M. Kuo, P. K. Ko, and C. Hu, ’BERT-A circuit aging simulator’, Memo. No. UCB/ERL M90/2, Electronics Research Lab., University of California, Berkeley ,1990

    Google Scholar 

  61. K. N. Quader, P. K. Ko, and C. Hu, ’Simulation of CMOS circuit degradation due to hot-carrier effects’, IEEE IRPS-92, Tech. Dig. ,pp. 16–23 (1992).

    Google Scholar 

  62. T. S. Hobol and L. A. Glasser, ’Relic: A reliability simulator for integrated circuits’, IEEE Proc. Int. Conf. Computer-Aided Design (Santa Clara CA), pp. 517–520 (1986).

    Google Scholar 

  63. S. Aur, D. E. Hocevar, and P. Yang, ’Hotron: A circuit hot electron effect simulator’, IEEE-IEDM87, Tech. Dig. ,pp. 498–501 (1987).

    Google Scholar 

  64. B. J. Sheu, W.-J. Hsu, and B. W. Lee, ’An integrated-circuit reliability simulator-RELY’, IEEE J. Solid-State Circuits, 2, pp. 473–477 (1989).

    Article  Google Scholar 

  65. F. C. Hsu and K. Y. Chiu, ’Temperature dependence of hot-electron-induced degradation in MOSFETs’, IEEE Electron Device Lett., EDL-5, pp. 148–150 (1984).

    Article  Google Scholar 

  66. D. Lau, G. Gildenblat, C. G. Sodini, and D. E. Nelsen, ’Low temperature substrate current characterization of n-channel MOSFETs’, IEEE IEDM-85, Tech. Dig., pp. 565–568 (1985).

    Google Scholar 

  67. G. Gildenblat, ’Low-temperature operation’ in: Advanced MOS Device Physics (N. G. Einspruch and G. Gildenblat, eds.), VLSI Electronics Vol. 18, pp. 191–232, Academic Press Inc., New York, 1989.

    Google Scholar 

  68. P. Heremans, G. V. Den Bosch, R. Bellens, G. Groeseneken, and H. E. Maes, ’Temperature dependence of the channel hot-carrier degradation of n-channel MOSFETs’, IEEE Trans. Electron Devices, ED-37, pp. 980–992 (1990).

    Article  Google Scholar 

  69. I. Kato, H. Oka, H. Hijiya, and T. Nakamura, IEEE IEDM-84, Tech. Dig. ,pp. 601–604 (1984).

    Google Scholar 

  70. W. N. Grant, ’Electron and hole ionization rates in epitaxial silicon at high electric fields’, Solid-State Electron., 16, pp. 1189–1203 (1973).

    Article  MathSciNet  Google Scholar 

  71. J. J. Sanchez, K. K. Hsueh, and T. A. DeMassa, ’Drain-engineered hot-electron-resistant device structures-A review’, IEEE Trans. Electron Devices, ED-36, pp. 1125–1131 (1989)

    Article  Google Scholar 

  72. S. Tam, F.-C. Hsu, C. Hu, R. S. Muller, and P. K. Ko, ’Hot-electron currents in very short channel MOSFETs’, IEEE Electron Device Letters, EDL-4, pp. 249–252 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this chapter

Cite this chapter

Arora, N. (1993). Modeling Hot-Carrier Effects. In: MOSFET Models for VLSI Circuit Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9247-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9247-4_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9249-8

  • Online ISBN: 978-3-7091-9247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics