Skip to main content

Recovery of Brain Function After Ischaemia

  • Conference paper
Plasticity of the Central Nervous System

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 41))

Summary

Experimental evidence has recently suggested that early reperfusion following at least focal cerebral ischaemia is accompanied by a return of function which has apparently been suspended during the ischaemic period. The experimental evidence for this is presented.

Clinical correlates of this reversible ischaemia sometimes referred to as “penumbral ischaemia” are well known in relation to aneurysm surgery. Several examples are presented in this paper. It is also clear that less easily documented and verifiable recovery from long-term ischaemia may occur in neurosurgery and in interesting case suggestive of this is presented. It involved a middle cerebral occlusion which occurred during the excision of a large meningioma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel M, McCandless D (1982) Metabolic profile of hippocampal regions after bilateral ischaemia and recovery. Neurochem Res 7: 789–797.

    Article  PubMed  CAS  Google Scholar 

  2. Ames A III, Gurian BS (1963) Effects of glucose and oxygen deprivation on function of isolated mammalian retina. J Neurophysiol 26: 617–634.

    PubMed  Google Scholar 

  3. Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischaemia. Stroke 8: 51–57.

    Article  PubMed  CAS  Google Scholar 

  4. Bazan N, Aveldano M, de Caldironi M, Rodriguez de Turco E (1982) Rapid release of free arachidonic acid in the central nervous system due to stimulation or arrests. Lipid Res 20: 523–529.

    Article  Google Scholar 

  5. Branston NM, Strong AJ, Symon L (1977) Extracellular potassium activity, evoked potential and tissue blood flow, relationship during progressive ischaemia in baboon cerebral cortex. J Neurol Sci 32: 305–321.

    Article  PubMed  CAS  Google Scholar 

  6. Branston NM, Symon L, Crockard HA, Pásztor E (1974) Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45: 195–208.

    Article  PubMed  CAS  Google Scholar 

  7. Collewijn H, van Harreveld A (1966) Intracellular recording of spinal motoneurones during acute asphyxia. J Physiol 185: 1–14.

    PubMed  CAS  Google Scholar 

  8. Collewijn H, van Harreveld A (1966) Membrane potential of cerebral cortical cells during spreading depression and asphyxia. Exp Neurol 15: 425–436.

    Article  PubMed  CAS  Google Scholar 

  9. Dennis C, Kabat H (1939) Behaviour of dogs after complete temporary arrest of the cephalic circulation. Proc Soc Exper Biol Med 40: 559–561.

    Google Scholar 

  10. Erecinska M, Nelson D, Wilson D, Silver I (1984) Neurotransmitter amino acid levels in the rat brain during ischaemia and reperfusion. Brain Res 304: 9–22.

    Article  PubMed  CAS  Google Scholar 

  11. Gardiner M, Nilsson B, Rehncrona S, Siesjö B (1981) Free fatty acids in the rat brain in moderate and severe hypoxia. J Neurochem 36: 1500–1505.

    Article  PubMed  CAS  Google Scholar 

  12. Grenell RG (1946) Central nervous system resistance. I. The effects of temporary arrest of cerebral circulation for a period of two to ten minutes. J Neuropath Exper Neurol 5: 131–154.

    Article  CAS  Google Scholar 

  13. Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metabol 1: 203–209.

    Article  CAS  Google Scholar 

  14. Harris RJ, Richards PG, Symon L, Habib A-HA, Rosenstein J (1987) pH, K+ and pO2 of the extracellular space during ischaemia of primate cerebral cortex. J Cereb Blood Flow Metabol (submitted)

    Google Scholar 

  15. Harvey J, Rasmussen T (1951) Occlusion of the middle cerebral artery. Arch Neurol 66: 20–29.

    CAS  Google Scholar 

  16. Hass WK (1981) Beyond cerebral blood flow, metabolism and ischaemic thresholds: an examination of the role of calcium in the initiation of cerebral infarction. In: Meyer JS et al (eds) Cerebral vascular disease 3. Excerpta Medica, Amsterdam.

    Google Scholar 

  17. Hossmann KA, Sato K (1971) Effect of ischaemia on the function of the sensorimotor cortex in cat. Electroenceph Clin Neurophysiol 30: 534–545.

    Article  Google Scholar 

  18. Hossmann KA, Sakaki S, Kimoto K (1977) Cerebral uptake of glucose and oxygen in the cat brain after prolonged ischaemia. Stroke 7: 301–305.

    Article  Google Scholar 

  19. Hossmann KA, Schuier FJ (1979) The metabolic (cytotoxic) type of brain oedema following middle cerebral artery occlusion in cats. In: Price T, Nelson E (eds) Cerebrovascular diseases. Raven, New York.

    Google Scholar 

  20. Hossmann KA, Takagi S (1976) Osmolality of brain in cerebral ischaemia. Exp Neurol 51: 124–131.

    Article  Google Scholar 

  21. Kaplan HA, Ford DH (1966) The brain vascular system. Elsevier, London.

    Google Scholar 

  22. Kofke W, Nemoto E, Hossmann K-A, Taylor F, Kessler P, Stezoski S (1979) Brain blood flow and metabolism after global ischaemia and post-insult thiopental therapy in monkeys. Stroke 10: 554–559.

    Article  PubMed  CAS  Google Scholar 

  23. Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet 2: 113–115.

    Google Scholar 

  24. Lazorthes G, Campan L (1964) La circulation cérébrale. Editions Sandoz, Paris.

    Google Scholar 

  25. Nowak T, Fried R, Lust D, Passonneau J (1985) Changes in brain energy metabolism and protein synthesis following transient bilateral ischaemia in the gerbil. J Neurochem 44: 487–493.

    Article  PubMed  CAS  Google Scholar 

  26. Paschen W, Hossmann KA, van den Kerckhoff W (1983) Regional assessment of energy-producing metabolism following prolonged complete ischaemia of cat brain. J Cereb Blood Flow Metab 1: 321–329.

    Article  Google Scholar 

  27. Pásztor E, Symon L, Dorsch NWC, Branston NM (1973) The hydrogen clearance method in assessment of blood flow in cortex, white matter and deep nuclei of baboons. Stroke 4: 556–567.

    Article  PubMed  Google Scholar 

  28. Przybylski A (1971) Activity pattern of visceral cortex neurons during asphyxia. Exp Neurol 32: 12–21.

    Article  PubMed  CAS  Google Scholar 

  29. Pulsinelli W, Kraig R, Plum F (1985) Hyperglycemia, cerebral acidosis in ischaemic brain damage. In: Plum F, Pulsinelli W (eds) Cerbrovascular diseases, 14th conference. Raven Press, New York, pp 201–206.

    Google Scholar 

  30. Rehncrona S, Rosen I, Siesjö B (1981) Brain lactic acidosis in ischaemic cell damge: Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1: 297–311.

    Article  PubMed  CAS  Google Scholar 

  31. Strong A, Tomlinson B, Venables G, Gibson G, Hardy J (1983) The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat. 2. Studies of histopathology, water content and in vitro neurotransmitter uptake. J Cereb Blood Flow Metabol 3: 97–108.

    Article  CAS  Google Scholar 

  32. Symon L (1961) Studies of leptomeningeal collateral circulation in macacus rhesus. J Physiol 159: 68–86.

    PubMed  CAS  Google Scholar 

  33. Symon L, Branston NM, Chikovani O (1979) Ischaemic brain oedema following middle cerebral artery occlusion in baboons. Relationship between regional cerebral water content and blood flow at 1–2 hours. Stroke 10: 184–191.

    Article  PubMed  CAS  Google Scholar 

  34. Symon L, Branston NM, Strong AJ, Hope TD (1977) The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol 30 [Suppl 11]: 149–154.

    Article  Google Scholar 

  35. Symon L, Dorsch NWC, Ganz JC (1972) Lactic acid efflux from ischaemic brain. J Neurol Sci 17: 411–418.

    Article  PubMed  CAS  Google Scholar 

  36. Symon L, Dorsch NWC, Crockard HA (1975) The production and clinical features of a chronic stroke model in experimental primates. Stroke 6: 476–481.

    Article  PubMed  CAS  Google Scholar 

  37. Symon L, Ganz JC, Dorsch NWC (1972) Experimental studies of hyperaemic phenomena in the cerebral circulation of primates. Brain 95: 265–278.

    Article  PubMed  CAS  Google Scholar 

  38. Symon L, Pásztor E, Branston NM (1974) The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: An experimental study by the technique of hydrogen clearance in baboons. Stroke 5: 355–364.

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi K, Bodsch W, Hossmann KA (1984) Susceptibility of hippocampal protein synthesis to transient forebrain ischaemia of adult and infant gerbil brain. Drugs Dis 1: 72–78.

    Google Scholar 

  40. Waltz AG (1969) Red venous blood: Occurrence and significance in ischaemic and non-ischaemic cerebral cortex. J Neurosurg 31: 141–148.

    Article  PubMed  CAS  Google Scholar 

  41. Weinberger LM, Gibbon MH, Gibbon JH Jr (1940) Temporary arrest of the circulation to the central nervous system. 2. Pathologic effects. Arch Neurol Psychiat 43: 961–986.

    Google Scholar 

  42. Yamaguchi T, Waltz AG, Okazaki H (1971) Hyperaemia and ischaemia in experimental cerebral infarction: correlation of histopathology and regional blood flow. Neurology 21: 565–578.

    PubMed  CAS  Google Scholar 

  43. Zwetnow NN (1970) Effects of increased cerebrospinal fluid pressure on the blood flow and on the energy metabolism of the brain. Acta Physiol Scand [Suppl] 339: 1–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag/Wien

About this paper

Cite this paper

Symon, L. (1987). Recovery of Brain Function After Ischaemia. In: Sano, K., Ishii, S. (eds) Plasticity of the Central Nervous System. Acta Neurochirurgica Supplementum, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8945-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8945-0_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8947-4

  • Online ISBN: 978-3-7091-8945-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics