Skip to main content

Antioxidant proteins in fetal brain: superoxide dismutase-1 (SOD-1) protein is not overexpressed in fetal Down syndrome

  • Chapter
Protein Expression in Down Syndrome Brain

Summary

Exposure of living organisms to reactive oxygen species (ROS), notably oxygen free radicals and hydrogen peroxide is closely linked to the very fact of aerobic life. Oxidants, however, are not always detrimental for cell survival, indeed moderate concentrations of ROS serve as signaling molecules. To maintain this level, cells have evolved an antioxidant defense system. Disruption of this balance leads either to oxidative or reductive stress. Down syndrome (DS) is a genetic disorder associated with oxidative stress. Overexpression of superoxide dismutase-1 (SOD-1) as a result of gene loading is suggested to be responsible for this phenomenon. To examine this view, we investigated the expression of thirteen different proteins involved in the cellular antioxidant defense system in brains of control and DS fetuses by two-dimensional electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS). No detectable change was found in expression of SOD-1, catalase, phospholipid hydroperoxide glutathione peroxidase, glutathione reductase, antioxidant enzyme AOE372, thioredoxin-like protein and selenium binding protein between control and DS fetuses. By contrast, a significant reduction was observed in levels of glutathione synthetase (P < 0.01), glutathiones-transferase mu2 (P < 0.01), glutathione-S-transferase p (P < 0.05), antioxidant protein 2 (P < 0.05), thioredoxin peroxidase-I (P < 0.05) and thioredoxin peroxidase-II (P < 0.01) in DS compared with controls. The data suggest that oxidative stress in fetal DS does not result from overexpression of SOD-1 protein, rather oxidative stress appears to be the consequence of low levels of reducing agents and enzymes involved in removal of hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anneren KG, Epstein CJ (1987) Lipid peroxidation and superoxide dismutase-1 and glutathione peroxidase activities in trisomy 16 fetal mice and human trisomy 21 fibroblast. Pediatr Res 21: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Bae SY, Kang SW, Seo MS, Bainess IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF) induced generation of hydrogen peroxide. Role in EGF receptor mediated tyrosine phosphorylation. J Biol Chem 272: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC, Blackstock W, Pappin DJ, Selby PJ (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet 356: 1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Davis J, Lesley R, Shubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Berndt, P, Hobohm U, Langen H (1999) Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20: 3521–3526

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Brooksbank BW, Balazs R (1984) Superoxide dismutase, glutathione peroxidase and lipoperoxidation in Down’s syndrome fetal brain. Brain Res 318: 37–44

    PubMed  CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of active oxygen species in Down syndrome neurons in vitro. Nature 378: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Castagne V, Gautschi M, Lefevre K, Posada A, Clarke PGH (1999) Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Prog Neurobiol 59: 397–423

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994a) Thioredoxin dependent peroxide reductase from yeast. J Biol Chem 269: 27670–27678

    PubMed  CAS  Google Scholar 

  • Chae HZ, Robinson K, Poole LB, Church G, Storz G, Rhee SG (1994b) Cloning and sequencing of thiol-specific antioxidants from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidants define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91: 7017–7021

    Article  PubMed  CAS  Google Scholar 

  • Chambers G, Lawrie L, Cash P, Murray GI (2000) Proteomics: a new approach to the study of disease. J Pathol 192: 280–288

    Article  PubMed  CAS  Google Scholar 

  • de Haan JB, Wolvetang EJ, Cristiano F, Iannello R, Bladier C, Keiner MJ, Kola I (1997) Reactive oxygen species and their contribution to pathology in Down syndrome. Adv Pharmacol 38: 379–402

    Article  PubMed  Google Scholar 

  • Engidawork E, Balic N, Fountoulakis M, Dierssen M, Lubec G (2001) ß-Amyloid precursor protein, ETS-2 and collagen alpha 1 (VI) chain precursor, encoded on chromosome 21, are not overexpressed in fetal Down syndrome: further evidence against gene dosage effect. J Neural Transm (this volume)

    Google Scholar 

  • Feaster WW, Kwok LW, Epstein CJ (1977) Dosage effects for superoxide dismutase-1 on nucleated cells aneuploid for chromosome 21. Am J Hum Genet 29: 563–570

    PubMed  CAS  Google Scholar 

  • Fountoulakis M, Langen H (1997) Identification of proteins by matrix assisted laser desorption ionization mass spectrometry following in-gel digestion in low salt, non- volatile buffer and simplified peptide recovery. Anal Biochem 250: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201: 875–888

    Article  PubMed  CAS  Google Scholar 

  • Gulesserian T, Seidl R, Hardmeier R, Cairns N, Lubec G (2001) Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patient with Down syndrome. J Invest Med 49: 41–46

    Article  CAS  Google Scholar 

  • Halliwell B, Gutterridge JMC (1989) Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell B, Gutterridge JMC (eds) Free radicals in biology and medicine, 2nd edn. Oxford University Press, New York, pp 86–187

    Google Scholar 

  • Hayn M, Kresmer K, Singewald N, Cairns N, Nemathova M, Lubec B, Lubec G (1996) Evidence against the involvement of reactive oxygen species in the pathogenesis of neuronal death in Down syndrome and Alzheimer’s disease. Life Sci 59: 537–544

    Article  PubMed  CAS  Google Scholar 

  • Iannello RC, Crack PJ, de Haan JW, Kola I (1999) Oxidative stress and neural dysfunction in Down syndrome. J Neural Transm 57: 257–267

    CAS  Google Scholar 

  • Jakoby WB (1978) The glutathione-S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol 46: 383–314

    PubMed  CAS  Google Scholar 

  • Jin D, Chae HZ, Rhee SG, Jeang KT (1997) Regulator role for a novel human thioredoxin peroxidase in NFK-B-activation. J Biol Chem 272: 30952–30961

    Article  PubMed  CAS  Google Scholar 

  • Jin LW, Masliah E, Deteresa IR, Mallory M, Sundsmo M, Mori N, Sobel A, Saitoh T (1996) Neurofibrillary tangle associated alteration of stathmin in Alzheimer’s disease. Neurobiol Aging 17: 331–341

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Bainess IC, Rhee SG (1998a) Characterization of mammalian peroxiredoxin that contain one conserved cysteine. J Biol Chem 273: 6303–6311

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Chae HZ, Seo MS, Kim K, Bainess IC, Rhee SG (1998a) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273: 6297–6302

    Article  PubMed  CAS  Google Scholar 

  • Langen H, Röder D, Juranville JF, Fountoulakis M (1997) Effect of the protein application mode and the acrylamide concentration on the resolution of protein spots separated by two-dimensional gel electrophoresis. Electrophoresis 18: 2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR (1999) The role of oxidative stress in Alzheimer’s disease. Arch Neurol 56: 1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S, Dagna-Bricarelli F, Piombo G, Perri G, Smith M, Traverso N, Tabaton M (1998) Early glyco-oxidation damage in brains from Down’s syndrome. Biochem Biophys Res Commun 243: 849–851

    Article  PubMed  CAS  Google Scholar 

  • Phelan SA (1999) AOP2 (antioxidant protein 2): structure and function of a unique thiol-specific antioxidant. Antioxd Redox Signal 1: 571–584

    Article  CAS  Google Scholar 

  • Prospéri M-T, Apiou F, Dutrillaux B, Goubin G (1994) Organizational and chromosomal assignment of two human PAG gene loci: PAGA encoding a functional gene and PAGB a processed pseudogene. Genomics 19: 236–241

    Article  PubMed  Google Scholar 

  • Seidl R, Greber S, Schuller E, Bernert G, Cairns N, Lubec G (1997) Evidence against increased oxidative DNA damage in Down syndrome brain. Neurosci Lett 235: 137

    Article  PubMed  CAS  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene expression. FASEB J 10: 709–720

    PubMed  CAS  Google Scholar 

  • Shau H, Huang ACJ, Faris M, Nazarian R, de Vellis J, Chen W (1998) Thioredoxin peroxidase (natural killer enhancing factor) regulation of activator protein-1 function in endothelial cells. Biochem Biophys Res Commun 249: 683–686

    Article  PubMed  CAS  Google Scholar 

  • Shimbara N, Orino E, Sone S, Ogura T, Takashima M, Shono M, Tamura T, Yasuda H, Tanaka K, Ichihara A (1992) Regulation of gene expression of proteasomes (multiprotease complex) during growth and differentiation of human hematopoietic cells. J Biol Chem 267: 18100–181009

    PubMed  CAS  Google Scholar 

  • Sies H (1991) Oxidative stress. In: Sies H (ed) Oxidants and antioxidants. Academic Press, London, pp 650

    Google Scholar 

  • Sies H (1994) Oxidative stress: from basic research to clinical medicine. In: Favier AE, Neve J, Faure P (ed) Trace elements and free radicals in oxidative diseases. AOCS PRESS, Champaign, Illinois, pp 1–7

    Chapter  Google Scholar 

  • Sundaresan M, Yu E-X, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of hydrogen peroxide for platelet-derived growth factor signal transduction. Science 270: 296–299

    Article  PubMed  CAS  Google Scholar 

  • Teller JK, Russo C, De Busk LM, Angelini G, Zaccheo D, Dagna-Bricarelli F, Scartezzini P, Bertolini S, Mann DMA, Tabaton M, Gambetti P (1996) Presence of soluble amyloid ß-peptide precedes amyloid plaque formation in Down’s syndrome. Nature Med 2: 93–95

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM (1997) Thioredoxin peroxidase is a novel inhabitor+ of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272: 30615–30618

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag/Wien

About this chapter

Cite this chapter

Gulesserian, T., Engidawork, E., Fountoulakis, M., Lubec, G. (2001). Antioxidant proteins in fetal brain: superoxide dismutase-1 (SOD-1) protein is not overexpressed in fetal Down syndrome. In: Lubec, G. (eds) Protein Expression in Down Syndrome Brain. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6262-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6262-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83704-7

  • Online ISBN: 978-3-7091-6262-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics