Skip to main content

Non-Linear Fracture Mechanics of Inhomogeneous Quasi-Brittle Materials

  • Chapter
Nonlinear Fracture Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 314))

Abstract

This chapter presents a survey of non-linear fracture mechanics of inhomogeneous quasi-brittle material. The large scale bridging in the fracture process zone is explicitly modelled as cohesive spring-like tractions and its implications on crack formation and limitations of linear elastic fracture mechanics are discussed. A model of tension-softening is described to illustrate the possibility of relating the micromechanical mechanisms and the material structure to composite non-linear fracture property. Finally, recent research on experimental determination of tension-softening behavior in inhomogeneous quasi-brittle materials is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Diamond, S. and A. Bentur: On the Cracking in Concrete and Fiber Reinforced Cements, in: Application of Fracture Mechanics to Cementitious Composites (Ed. S.P. Shah ), Martinus Nijhoff Publ., 1985, 87–140.

    Chapter  Google Scholar 

  2. Li, V.C., S. Backer, Y. Wang, R. Ward, and E. Green: Toughened Behavior and Mechanisms of Synthetic Fiber Reinforced Normal Strength and High Strength Concrete, in: Fiber Reinforced Cements and Concretes, Recent Developments (Eds. R.N. Swamy and B. Barr), Elsevier Applied Science, London, 1989, 420–433.

    Google Scholar 

  3. Mandell, J., Darwish, and F. McGarry: Fracture testing of injection-molded glass and carbon fiber-reinforced thermoplastics, ASTM STP 734 (1981), 73–90.

    Google Scholar 

  4. Jang and Liu: Fracture behavior of short-fiber reinforced thermoplastics, I: crack propagation mode and fracture toughness, J. Appl. Poly. Sci., (1985), 3925–3942.

    Google Scholar 

  5. Becher, P.F., C.H. Hsueh, P. Angelini, and T.N. Tiegs: Toughening behavior in whisker-reinforced ceramic matrix composites, J. Am. Soc., 71, 12 (1988), 10501061.

    Google Scholar 

  6. Ruhle, M., B.J. Dalgleish, and A.G. Evans: On the toughening of ceramics by whisker, Scrip. Metal., 21 (1987), 681–686.

    Google Scholar 

  7. Evans, A.: The New High Toughness Ceramics, SB report, 87.

    Google Scholar 

  8. Mindess, S.: The Application of Fracture Mechanics to Cement and Concrete: A Historical Review, in: Fracture Mechanics of Concrete (Ed. F.H. Wittmann ), Elsevier Publ., 1983, 1–30.

    Google Scholar 

  9. Swanson, P.L.: Crack-interface Traction: A Fracture-Resistance Mechanism in Brittle Polycrystals, in: Advances in Ceramics, Am. Ceram. Soc., Columbus, OH, 1986.

    Google Scholar 

  10. Swanson, P.L., C.J. Fairbanks, B.R. Lawn, Y.W. Mai, and B.J. Hockey: Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study on alumina, J. Am. Ceram. Soc., 70, 4 (1987), 279–289.

    Article  Google Scholar 

  11. Sakai, M., J. I. Yoshimura, Y. Goto, and M. Inagaki: R-Curve behavior of a polycrystalline graphite: microcracking and grain bridging in the wake region, J. Am. Ceramic Soc., 71, 8 (1988), 609–616.

    Article  Google Scholar 

  12. Reichl, A. and R.W. Steinbrech: Determination of crack-bridging forces in alumina, J. Am. Ceram. Soc., 71, 6 (1988), 299–301.

    Article  Google Scholar 

  13. Kramer, E.J.: Microscopic and Molecular Fundamentals of Crazing, in: Crazing in Polymers, Advances in Polymer Science 52/53, (Ed. H.H. Kausch ), Springer-Verlag, 1983, 1–56.

    Chapter  Google Scholar 

  14. Budiansky, B.: Micromechanics II, in: Proceedings of Tenth U.S. Congress of Applied Mechanics, 1986.

    Google Scholar 

  15. Rose, L.R.F.: Crack reinforcement by distributed springs, J. Mech. Phys. Sol., 35 (1987), 383–405.

    Article  MATH  Google Scholar 

  16. Marshall, D.B., and A.G. Evans: The influence of residual stress on the toughness of reinforced brittle materials, Material Forum, 11 (1988), 304–312.

    Google Scholar 

  17. Rice, J. R.: Mathematical Analysis in the Mechanics of Fracture, in: Fracture: An Advanced Treatise, 2, Academic Press, (1968), 191–311.

    Google Scholar 

  18. Rose, L.R.F.: Toughening due to crack-front interaction with a second-phase dispersion, Mech. of Mat., 6 (1987), 11–15.

    Article  Google Scholar 

  19. Rice, J. R.: Crack Fronts Trapped By Arrays of Obstacles: Solutions Based on Linear Perturbation Theory, in: Analytical, Numerical, and Experimental Aspects of Three Dimensional Fracture Processes, AMD-91, (Eds. A.J. Rosakis, K. Ravi-Chandar, Y. Rajapakse ), ASME, 1988, 175–184.

    Google Scholar 

  20. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate, J. Applied Mechanics, 24 (1957), 361–364.

    Google Scholar 

  21. Barenblatt, G.I.: Mathematical Theory of Equilibrium Cracks in Brittle Fracture, in: Advances in Applied Mechanics, VII, Academic Press, New York, 1962.

    Google Scholar 

  22. Dugdale, D.S.: Yielding of steel sheets containing slits, J. Mechanics and Physics of Solids, V. 8, 1960.

    Google Scholar 

  23. Marshall, D.B. and B.N. Cox: A J-Integral method for calculating steady-state matrix cracking stresses in composites, Mechanics of Materials, 7 (1988), 127–133.

    Article  Google Scholar 

  24. Li, V.C. and E. Liang:. Fracture process in concrete and fiber reinforced cementitious composites, ASCE J. of Engineering Mechanics, 112, 6 (1986), 566–586.

    Article  Google Scholar 

  25. Palmer, A.C. and J.R. Rice: The Growth of Slip-Surfaces in the Progressive Failure of Overconsolidated Clay Slopes, Proceedings of the Royal Society of London, A332, (1973), 572–548.

    Article  Google Scholar 

  26. Leung, C.K., and V.C. Li: Reliability of First-Cracking Strength for Short-fiber Reinforced Brittle Matrix Composites, In: Ceramics Eng. Sci. Proc., 9/10, 1989, 11641178.

    Google Scholar 

  27. Marshall, D.B. and A.G. Evans: Tensile Strength of Uniaxially Reinforced Ceramic Fiber Composites, in: Fracture Mechanics of Ceramics, (Eds. R.C. Bradt, A.G. Evans, D.P.H. Hasselman and F.F. Lange), 7, Plenum Press, New York (1986), 1–15.

    Google Scholar 

  28. Hillerborg, A., M. Modeer, and P.E. Petersson: analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 6, (1976), 773–782.

    Article  Google Scholar 

  29. Ingraffea, A. and W.H. Gerstle: Nonlinear Fracture Models for Discrete Crack Propagation, in: Applications of Fracture Mechanics to Cementitious Composites, NATO ASI Series, 94 ( Ed. S.P. Shah) Martinus Nijhoff Publ., 1985, 247–286.

    Chapter  Google Scholar 

  30. Ingraffea, A.: Theory of Crack Initiation and Propagation in Rock, in: Fracture Mechanics of Rock, (Ed. B. Atkinson ), Academic Press, 1987, 71–110.

    Chapter  Google Scholar 

  31. Mai, Y. and B. Lawn: Crack-interface grain bridging as a fracture resistance mechanism in ceramics: ii theoretical fracture mechanics model, J. Am. Ceram. Soc. 70, 4 (1987), 289–294.

    Article  Google Scholar 

  32. Swanson, P.L.: Tensile fracture resistance mechanisms in brittle polycrystals: an ultrasonics and in-situ microscopy investigation, J. Geophysical Res., 92, (1987), 8015–8036.

    Article  Google Scholar 

  33. Wecharatana, M. and S.P. Shah: Slow crack growth in cement composites, J. Stru., ASCE, 108, 6, (1982), 1400–1413.

    Google Scholar 

  34. Cook, R.: Transient Fracture Resistance in the Weak Toughening Limit, in: International Congress of Fracture, Proceeding Vol. 4, (Eds. Salama, Ravi-Chandar, Taplin, and Rao ), 1989, 2747–2756.

    Google Scholar 

  35. Francois, D.: Fracture and Damage Mechanics of Concrete, in: Application of Fracture Mechanics to Cementitious Composites, (Ed. S.P. Shah) Martinus Nijhoff Publ., 1985, 141–156.

    Chapter  Google Scholar 

  36. Takahashi, H. and H. Abé: Fracture Mechanics Applied to Hot, Dry Rock Geothermal Energy, in: Fracture Mechanics of Rock, (Ed. B. Atkinson ), Academic Press, 1987, 241–276.

    Chapter  Google Scholar 

  37. Ingraffea, A.R., K.L.Gaunsallus, J.F. Beech and P.P. Nelson: A Short Rod Based System for Fracture Toughness Testing of Rock, in: Chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855, Louisville, (1983), 152–166.

    Google Scholar 

  38. Li, V. C., K. Chong, and H. H. Einstein, Tension Softening and Size Effects on Fracture Toughness Determination of Geomaterials, in: Fracture of Concrete and Rock, (Eds. Swartz and S. Shah), Springer-Verlag, New York, 255–264, 1989.

    Google Scholar 

  39. Li, V.C.: Mechanics of Shear Rupture Applied to Earthquake Zones, in Fracture Mechanics of Rock, (Ed. B.K. Atkinson ), Academic Press, 1987, 351–432.

    Chapter  Google Scholar 

  40. Bazant, Z.P., S. Sener and P.C. Prat: Fracture Mechanics Size Effect and Ultimate Load of Beams Under Torsion, in: Application of Fracture Mechanics to Concrete, Ed. V.C. Li and Z. Bazant, ACI STP, 1990, 171–178.

    Google Scholar 

  41. Wang, Y., V.0 Li, and S. Backer: Tensile failure mechanisms in synthetic fiber reinforced mortar, submitted to the J. Materials Science (1990).

    Google Scholar 

  42. Li, V.C., Y. Wang, and S. Backer: A statistical-micromechanical model of tension-softening behavior of short fiber reinforced brittle matrix composites, submitted for publication, J. Mech. and Phys. of Solids (1990).

    Google Scholar 

  43. Li, V.C., Y. Wang, and S. Backer: Effect of inclining angle, bundling, and surface treatment on synthetic fiber pull-out from a cement matrix, to appear in Composites (1990).

    Google Scholar 

  44. Greszczuk, L. B.: Theoretical studies of the mechanics of the fiber-matrix interface in composites, in ASTM STP 452 (1969), 42–58.

    Google Scholar 

  45. Takaku, A. and R.G.C. Arridge: The effect of interfacial radial and shear stress on fiber pull-out in composite materials, Journal of Physics D: Applied Physics, 6 (1973), 2038–2047.

    Article  Google Scholar 

  46. Lawrence, P.: Some theoretical considerations of fiber pull out from an elastic matrix, J. Mat.Sci. 7, (1972) 1–6.

    Article  Google Scholar 

  47. Gopalaratnam, V.S., and S.P. Shah: Tensile failure of steel fiber-reinforced mortar, ASCE J. of Engineering Mechanics, 113, 5, (1987), 635–652.

    Article  Google Scholar 

  48. Wang, Y., V.0 Li, and S. Backer: Modeling of fiber pull-out from a cement matrix, International J. of Cement Composites and lightweight Concrete, 10, 3, (1988), 143149.

    Google Scholar 

  49. Wang, Y., V.C. Li, and S. Backer: Analysis of synthetic fiber pull-out from a cement matrix, Material Research Society Symposium Proceeding, 114, (1988), 159–165.

    Google Scholar 

  50. Naaman, A., and S.P. Shah: Pull-out mechanism in steel fiber reinforced concrete, J. Struc., ASCE, 102, ST8, (1976), 1537–1548.

    Google Scholar 

  51. Wang, Y., V.C. Li, and S. Backer: Experimental determination of tensile behavior of fiber reinforced concrete, to appear in ACI Materials Journal (1990).

    Google Scholar 

  52. Wang, Y., V.C. Li, and S. Backer: Tensile properties of synthetic fiber reinforced mortar, to appear in J. of Cement Composites and Lightweight Concrete (1990).

    Google Scholar 

  53. Li, V.C., and E. Green: Tensile behavior of synthetic fiber reinforced high strength mortar and concrete, in preparation (1990).

    Google Scholar 

  54. Wang, Y., S. Backer, and V.C. Li: An experimental study of synthetic fiber reinforced cementitious composites, Journal of Materials Science, 22, (1987), 4281–4291.

    Article  Google Scholar 

  55. Wang, Y., S. Backer, and V.C. Li: A special technique for determining the critical length of fiber pull-out from a cement matrix, J. of Materials Science Letters, 7 (1988), 842–844.

    Article  Google Scholar 

  56. Li, V.C., Y. Wang and S. Backer: Effect of Fiber-Matrix Bond Strength on The Crack Resistance of Synthetic Fiber Reinforced Cementitious Composites, in: Bonding in Cementitious Composites (Eds. S. Mindess and S. Shah), MRS Symposia 114: 1988, 167–174.

    Google Scholar 

  57. Visalvanich K. and A.E. Naaman: In: Fracture Mechanics Methods for Ceramics, Rocks, and Concrete, ASTM STP 745, (Ed.S.W. Freiman and E.R. Fuller) 1981, 141156.

    Google Scholar 

  58. Visalvanich, K. A.E. Naaman: Fracture Model for fiber reinforced concrete, ACI J. March-April, 1983, 128–138.

    Google Scholar 

  59. Petersson, P.E.: Crack Growth And Development Of Fracture Zone In Plain Concrete And Similar Materials. Div. of Building Materials, Lund Institute of Technology, Sweden. Report TVBM-1006, 1981.

    Google Scholar 

  60. Reinhardt, H.W.: Fracture Mechanics Of An Elastic Softening Material Like Concrete, Heron, Delft University of Technology, 29: 2, 1984.

    Google Scholar 

  61. Marshall, D.B. and A.C. Evans: Failure mechanisms in ceramic-fiber/ceramic matrix composites, J. Am. Ceram. Soc., 68, 5 (1985) 225–31.

    Article  Google Scholar 

  62. Gopalaratnam, V.S. and S.P. Shah,. Softening response of concrete in direct tension, J. Amer. Concrete Inst. 82: 310 (1985).

    Google Scholar 

  63. Labuz, J.F., S.P. Shah and C. H. Dowding: Measurement and description of the tensile fracture process in rock, ASCE J. Eng. Mech., (1989).

    Google Scholar 

  64. Li, V.C.: Fracture Resistance Parameters For Cementitious Materials And Their Experimental Determination, in: Application of Fracture Mechanics to Cementitious Composites, (Ed. S.P. Shah) Martinus Nijhoff Publ., 1985, 431–452.

    Chapter  Google Scholar 

  65. Li, V.C., C.M. Chan, and C.K.Y. Leung: Experimental determination of the tension softening relations for cementitious composites, Cement and Concrete Research, 17 (1987) 441–452.

    Article  Google Scholar 

  66. Leung, C.K.Y. and V.C. Li: Determination of fracture toughness parameter of quasi-brittle materials with laboratory-size specimens, J. of Materials Science, 24, (1989) 854–862.

    Article  Google Scholar 

  67. Li, V.C. and R. Ward: A Novel Testing Technique for Post-Peak Tensile Behavior of Cementitious Materials, in: Fracture Toughness and Fracture Energy - Test Methods for Concrete and Rock, (Ed. Mihashi), in press, A.A.Balkema Publishers, Netherlands, 1989.

    Google Scholar 

  68. Chong, K.P., V.C. Li and H. Einstein: Size effects, process zone, and tension softening behavior in fracture of geomaterials“, in press, Int’l J. of Engineering Fracture Mechanics, 1989.

    Google Scholar 

  69. Chong, K.P., K.D. Basham, and D.Q. Wang: Fracture parameters derived from tension-softening measurements using semi-circular specimens, in: Fracture Toughness and Fracture Energy - Test Methods for Concrete and Rock, (Ed. Mihashi), in press, A.A.Balkema Publishers, Netherlands, 1989.

    Google Scholar 

  70. Hashida, T.: Tension-softening curve measurements for fracture toughness determination in granite, in: Fracture Toughness and Fracture Energy - Test Methods for Concrete and Rock, (Ed. Mihashi), in press, A.A.Balkema Publishers, Netherlands, 1989.

    Google Scholar 

  71. Rice, J.R.: A path independent integral and the approximate analysis of strain concentrations by notches and cracks, J. Applied Mechanics, 35 (1968) 379–386.

    Article  Google Scholar 

  72. Reyes, O.M.L.: Numerical Modelling Of Fracture Propagation In Tension Softening Materials, M.S. Thesis, MIT, Cambridge, MA, (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Li, V.C. (1990). Non-Linear Fracture Mechanics of Inhomogeneous Quasi-Brittle Materials. In: Wnuk, M.P. (eds) Nonlinear Fracture Mechanics. International Centre for Mechanical Sciences, vol 314. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2758-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2758-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82246-3

  • Online ISBN: 978-3-7091-2758-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics