Skip to main content

Numerical Modelling of Fracture Propagation

  • Chapter
Rock Fracture Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 275))

Abstract

Why should one study fracture propagation? Is not prediction of fracture initiation the object of fracture mechanics? In his papers on rupture under tensile and compressive loading, Griffith1,2 proposed conditions for fracture initiation which he presumed to be coincident with structural instability. The vast majority of the fracture mechanics research since Griffith has addressed the problem of predicting structural failure as the immediate consequence of fracture initiation. Yes, considerable attention has been focused on sub-critical crack growth as in fatigue and ductile fracture. But there the amount of propagation before fracture initiation is typically small compared to that which potentially occurs after. Why, then, should one be interested in modelling propagation: where a crack goes, what it does along the way, and how much energy it takes to get there?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffith, A.A.: The phenomenon of rupture and flow in solids. Phil. Trans. Roy. Soc. London, Ser. A221, 163 (1921)

    Article  Google Scholar 

  2. Griffith, A.A.: Theory of rupture. Proc.First Int. Congress Appl. Mech., Delft 55 (1924)

    Google Scholar 

  3. Ingraffea, A.R.: Discrete fracture propagation in rock: laboratory tests and finite element analysis. Ph.D. dissertation, University of Colorado (1977)

    Google Scholar 

  4. Ingraffea, A.R. and H.-Y. Ko: Determination of fracture parameters for rock. Proceedings of First USA-Greece Symposium Mixed Mode Crack ‘Propagation, G.C. Sih and P.S. Theocaris, eds., Sijthoff & Noordhoff, Alphen aan den Rijn, the Netherlands, 349 (1981)

    Google Scholar 

  5. Ingraffea, A.R. and F.E. Heuze: Finite element models for rock fracture mechanics. Int.J.Num.Analy.Meths. in Geomechs. 4,25 (1980)

    Google Scholar 

  6. Cotterell, B.: Brittle fracture in compression. Int.J.Fract.Mech. 8, 195 (1972)

    Google Scholar 

  7. Bombalakis, E.G.: Photoelastic study of initial stages of brittle fracture in compression. Tectonophysics 6, 461 (1968)

    Article  Google Scholar 

  8. Hoek, E. and Z.T. Bieniawski: Brittle fracture propagation in rock under compression. Int.J.Fract.Mech. 1, 139 (1965)

    Google Scholar 

  9. Ingraffea, A.R.: The strength-ratio effect in rock fracture. J. of Am.Cer.Soc., in press.

    Google Scholar 

  10. Parks, D.M.: A stiffness derivative finite element technique for determination of crack tip states intensity factors. Int.J.Fract. 10, 4, 487 (1974)

    Article  MathSciNet  Google Scholar 

  11. Atluri, S.N., A.S. Kobayashi, and M. Nakagaki: An assumed displacement hybrid element model for linear fracture mechanics. Int.J. Fract. 11,2, 257 (1975)

    Google Scholar 

  12. Chan, S.F., I.S. Tuba, and W.K. Wilson: On the finite element method in linear fracture mechanics. Engr.Fract.Mech. 2, 1 (1970)

    Article  Google Scholar 

  13. Wilson, W.K.: On combined mode fracture mechanics. Ph.D. dissertation, University of Pittsburgh (1969)

    Google Scholar 

  14. Tracey, D.M.: Finite elements for determination of crack tip elastic stress intensity factors. Engr.Fract.Mech. 3, 255 (1971)

    Article  Google Scholar 

  15. Jordan, W.B.: The plane isoparametric structural element. General Electric Co., Knolls Atomic Power Lab., Report No. KAPL-M-7112 (1970)

    Google Scholar 

  16. Barsoum, R.S.: On the use of isoparametric finite elements in linear fracture mechanics. Int.J.Num.Meth.Engrg. 10, 25 (1976)

    Article  MATH  Google Scholar 

  17. Barsoum, R.S.: Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int.J.Num.Meth.Engrg. 11, 85 (1977)

    Article  MATH  Google Scholar 

  18. Freese, C.E. and D.M. Tracey: The natural isoparametric triangle versus collapsed quadrilateral for elastic crack analysis. Int.J. Fract. 12, 767 (1976)

    Google Scholar 

  19. Shih, C.F., H.G. de Lorenzi, and M.D. German: Crack extension modeling with singular quadratic isoparametric elements. Int.J. Fract. 1, 647 (1976)

    Google Scholar 

  20. Ingraffea, A.R. and C. Manu: Stress-intensity factor computation in three dimensions with quarter-point elements. Int.J.Num.Meth.Engrg. 15, 10, 1427 (1980)

    Google Scholar 

  21. Cruse, T.A. and R.B. Wilson: Boundary-integral equation method for elastic fracture mechanics. AFOSR-TR-0355 (1977)

    Google Scholar 

  22. Blandford, G., A.R. Ingraffea, and J.A. Liggett: Two-dimensional stress intensity factor calculations using boundary elements methods. Int.J.Num.Meth.Engrg. 17, 387 (1982)

    Article  Google Scholar 

  23. Brown, W.F. and J.E. Srawley: Plane strain crack toughness testing of high strength metallic materials. ASTM Special Tech. Publication, 410 (1966)

    Google Scholar 

  24. Erdogan, F. and G.C. Sih: On the crack extension in plates under plane loading and transverse shear. ASME J.Basic Engr. 85, 519 (1963)

    Article  Google Scholar 

  25. Sih, G.C.: Some basic problems in fracture mechanics and new concepts. Engr.Fract.Mech. 5, 365 (1973)

    Article  Google Scholar 

  26. Sih, G.C.: Strain-energy-density factor applied to mixed mode crack problems. Int.J.Fract. 10, 305 (1974)

    Article  Google Scholar 

  27. Sih, G.C. and B. MacDonald: Fracture mechanics applied to engineering problems — strain energy density fracture criterion. Eng.Fract. Mech. 6, 361 (1974)

    Google Scholar 

  28. Sih, G.C.: Surface layer energy and strain energy density for a blunted notch or crack. Proc.Int.Conf.Prosp.Fract.Mech., Delft (1974)

    Google Scholar 

  29. Sih, G.C.: Mechanics of fracture: linear response. Proc. of the First Int.Conf. on Num.Meth. in Fract.Mech., University College, Swansea 155 (1978)

    Google Scholar 

  30. Hussain, M.A., S.L. Pu, and J. Underwood: Strain energy release rate for a crack under combined Mode I and Mode II. Frac. Analysis, ASTM-STP 560 2 (1974)

    Google Scholar 

  31. Kordisch, H. and E.Sommer: Bruchkriterien bei überlagerter Normal-und Scherbeanspruchung von Rissen. Report W677, Fraunhofer-Gesellschaft, Institut für Werkstoffmechanik, IWM, Freiburg, West Germany.

    Google Scholar 

  32. Ingraffea, A.R.: Mixed-mode fracture initiation in Indiana limestone and Westerly granite. Proc. 22nd U.S. Symposium on Rock Mechanics, Cambridge, MA 186 (1981)

    Google Scholar 

  33. Saouma, V., A.R. Ingraffea, and D. Catalano: Fracture toughness of concrete: KIc revisited. ASCE J.Engr.Mech.Div., in press.

    Google Scholar 

  34. Beech, J. and A.R. Ingraffea: Three-dimensional finite element stress intensity factor calibration of the short rod specimen. Int. J.Fract. 18 3 217 (1982)

    Google Scholar 

  35. Blandford, G.E.: Automatic two-dimensional quasi-static and fatigue crack propagation using the boundary element method. Ph.D. dissertation, Cornell University (1981)

    Google Scholar 

  36. Saouma, V.E.: Interactive finite element analysis of reinforced concrete: a fracture mechanics approach. Ph.D. dissertation, Cornell University (1981)

    Google Scholar 

  37. Ingraffea, A.R., G. Blandford, and J.A. Liggett: Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. Proceedings 14th National Symposium on Fracture Mechanics, ASTM-STP 791 (1981) in press.

    Google Scholar 

  38. Saouma, V.E. and A.R. Ingraffea: Fracture mechanics analysis of discrete cracking. Proceedings, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft 393 (1981)

    Google Scholar 

  39. Hoek, E.: Rock fracture around mining excavations. Proc. Fourth Int. Conf. Strata Control and Rock Mech., Columbia University, NY 334 (1964)

    Google Scholar 

  40. Haber, R.B., M.S. Shephard, R.H. Gallagher, and D.P. Greenberg: A.generalized graphic preprocessor for two-dimensional finite element analysis. Computer Graphics, a quarterly report of SIGGRAPH-ACM 12, 3, 323 (1978)

    Article  Google Scholar 

  41. Schulman, M.A.: The interactive display of parameters on two-and three-dimensional surfaces. M.S. thesis, Cornell University (1981)

    Google Scholar 

  42. Lajtai, E.Z. and V.N. Lajtai: The collapse of cavities. Int.J. Rock Mech.Min.Sci. and Geomech.Abstr., 12, 81 (1975)

    Article  Google Scholar 

  43. Paul, B. and M.D. Gangal: Why compressive loads on drill bits produce tensile splitting in rock. SPE 2392, Proc. Fourth Conf. on Drilling and Rock Mech., University of Texas at Austin 109 (1969)

    Google Scholar 

  44. Wan, F.-D., L. Ozdemir, and L. Snyder: Prediction and verification of tunnel boring machine performance. Paper presented at Euro Tunnel, Basel, Switzerland (1978)

    Google Scholar 

  45. Dick, E. and K. Peter: Generation of deep cracks in glass. J.Amer. Ceram.Soc. 52, 338 (1969)

    Article  Google Scholar 

  46. Perucchio, R., A.R. Ingraffea, and J.F. Abel: Interactive computer graphic preprocessing for three-dimensional finite element analysis. Int.J.Num.Meth.Engrg. 18, 909–926 (1982)

    Article  MATH  Google Scholar 

  47. Perucchio, R. and A.R. Ingraffea: Interactive computer graphic preprocessing for three-dimensional boundary integral element analysis. J. of Comp. and Struct. 16, 153–166 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this chapter

Cite this chapter

Ingraffea, A.R. (1983). Numerical Modelling of Fracture Propagation. In: Rossmanith, H.P. (eds) Rock Fracture Mechanics. International Centre for Mechanical Sciences, vol 275. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2750-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2750-6_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81747-6

  • Online ISBN: 978-3-7091-2750-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics