Skip to main content

Abstract

Age is the single most important prognostic factor associated with many cancers, including most leukemias and lymphomas. Aging is also associated with dramatic changes in hematopoiesis. As all mature hematopoietic cells are derived from multipotent hematopoietic stem cells (HSCs), age-dependent changes in these cells likely contribute to both alterations in hematopoiesis and increases in blood cancers. In this chapter, we will review the various changes in both HSCs and their microenvironments that could underlie the striking association between multiple major hematopoietic malignancies and old age. Traditionally, the association between aging and cancer has been explained by the requirement for sufficient time for the requisite number of oncogenic mutations to accumulate, as these mutations are thought to limit cancer incidence. We will describe how other aging-associated changes in hematopoietic stem/progenitor cells and their niches, including alterations in cellular fitness, inflammation, localization, and differentiation, could substantially impact age-dependent leukemogenesis. Aging of the hematopoietic system is highly complicated and multifactorial, and likewise increased leukemogenesis in the elderly will likely belie simple explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal N et al (2012) Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov 2(10):899–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alizadeh AA, Majeti R (2011) Surprise! HSC are aberrant in chronic lymphocytic leukemia. Cancer Cell 20(2):135–136

    CAS  PubMed  Google Scholar 

  • Allman D, Miller JP (2005) The aging of early B-cell precursors. Immunol Rev 205:18–29

    CAS  PubMed  Google Scholar 

  • Almog N et al (2006) Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J 20(7):947–949

    CAS  PubMed  Google Scholar 

  • Andrew D, Aspinall R (2001) Il-7 and not stem cell factor reverses both the increase in apoptosis and the decline in thymopoiesis seen in aged mice. J Immunol 166(3):1524–1530

    CAS  PubMed  Google Scholar 

  • Anisimov VN (2009) Carcinogenesis and aging 20 years after: escaping horizon. Mech Ageing Dev 130(1–2):105–121

    CAS  PubMed  Google Scholar 

  • Armstrong SA et al (2004) FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 103(9):3544–3546

    CAS  PubMed  Google Scholar 

  • Aspinall R, Andrew D (2000a) Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18(16):1629–1637

    CAS  PubMed  Google Scholar 

  • Aspinall R, Andrew D (2000b) Thymic involution in aging. J Clin Immunol 20(4):250–256

    CAS  PubMed  Google Scholar 

  • Bagby GC, Meyers G (2009) Myelodysplasia and acute leukemia as late complications of marrow failure: future prospects for leukemia prevention. Hematol Oncol Clin North Am 23(2):361–376

    PubMed Central  PubMed  Google Scholar 

  • Baldridge MT et al (2010) Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465(7299):793–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balducci L, Beghe C (2001) Cancer and age in the USA. Crit Rev Oncol Hematol 37(2):137–145

    CAS  PubMed  Google Scholar 

  • Beerman I et al (2010a) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107(12):5465–5470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beerman I et al (2010b) Stem cells and the aging hematopoietic system. Curr Opin Immunol 22(4):500–506

    CAS  PubMed  Google Scholar 

  • Bell JT, Spector TD (2011) A twin approach to unraveling epigenetics. Trends Genet 27(3):116–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benz CC, Yau C (2008) Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 8(11):875–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biernaux C et al (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86(8):3118–3122

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2002) Oncogenic resistance to growth-limiting conditions. Nat Rev Cancer 2(3):221–225

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2008) Prevention of cancer by inhibiting aging. Cancer Biol Ther 7(10):1520–1524

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV et al (2010) Impact papers on aging in 2009. Aging (Albany NY) 2(3):111–121

    CAS  PubMed Central  Google Scholar 

  • Bose S et al (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92(9):3362–3367

    CAS  PubMed  Google Scholar 

  • Bowie MB et al (2006) Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest 116(10):2808–2816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cain D et al (2009) Effects of acute and chronic inflammation on B-cell development and differentiation. J Invest Dermatol 129(2):266–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campisi J (2005a) Suppressing cancer: the importance of being senescent. Science 309(5736):886–887

    CAS  PubMed  Google Scholar 

  • Campisi J (2005b) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522

    CAS  PubMed  Google Scholar 

  • Carlson LM et al (2013) Low-dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of neuroblastoma. Carcinogenesis 34(5):1081–1088

    CAS  PubMed  Google Scholar 

  • Casas-Selves M, DeGregori J (2011) How cancer shapes evolution, and how evolution shapes cancer. Evol Educ Outreach 4:624–634

    Google Scholar 

  • Challen GA et al (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6(3):265–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers SM, Goodell MA (2007) Hematopoietic stem cell aging: wrinkles in stem cell potential. Stem Cell Rev 3(3):201–211

    CAS  PubMed  Google Scholar 

  • Chambers SM et al (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8), e201

    PubMed Central  PubMed  Google Scholar 

  • Chang S, Khoo C, DePinho RA (2001) Modeling chromosomal instability and epithelial carcinogenesis in the telomerase-deficient mouse. Semin Cancer Biol 11(3):227–239

    CAS  PubMed  Google Scholar 

  • Chen J, Astle CM, Harrison DE (1999) Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol 27(5):928–935

    CAS  PubMed  Google Scholar 

  • Chen J, Astle CM, Harrison DE (2000) Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol 28(4):442–450

    CAS  PubMed  Google Scholar 

  • Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352(8):804–815

    CAS  PubMed  Google Scholar 

  • Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111(12):5553–5561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford YG et al (2004) Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5(3):263–273

    CAS  PubMed  Google Scholar 

  • Damm F et al (2014) Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 4(9):1088–1101

    CAS  PubMed  Google Scholar 

  • de Haan G, Van Zant G (1999) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93(10):3294–3301

    PubMed  Google Scholar 

  • DeGregori J (2011) Evolved tumor suppression: why are we so good at not getting cancer? Cancer Res 71(11):3739–3744

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeGregori J (2013) Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene 32(15):1869–1875

    CAS  PubMed Central  PubMed  Google Scholar 

  • DePinho RA (2000) The age of cancer. Nature 408(6809):248–254

    CAS  PubMed  Google Scholar 

  • Dorshkind K, Swain S (2009) Age-associated declines in immune system development and function: causes, consequences, and reversal. Curr Opin Immunol 21(4):404–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorshkind K, Montecino-Rodriguez E, Signer RA (2009) The ageing immune system: is it ever too old to become young again? Nat Rev Immunol 9(1):57–62

    CAS  PubMed  Google Scholar 

  • Dykstra B et al (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards BK et al (2002) Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer 94(10):2766–2792

    PubMed  Google Scholar 

  • Eliasson P et al (2010) Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol 38(4):301–310. e2

    CAS  PubMed  Google Scholar 

  • Essers MA et al (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458(7240):904–908

    CAS  PubMed  Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448(7155):767–774

    CAS  PubMed  Google Scholar 

  • Flach J et al (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512(7513):198–202, Advance online publication

    CAS  PubMed  Google Scholar 

  • Fleenor CJ, Marusyk A, DeGregori J (2010) Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 9(15):3005–3011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Florian MC et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Florian MC et al (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franceschi C et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    CAS  PubMed  Google Scholar 

  • Franceschi C et al (2005) Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 126(2):351–361

    CAS  PubMed  Google Scholar 

  • Frank SA (2010) Evolution in health and medicine Sackler colloquium: somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci U S A 107 Suppl 1:1725–1730

    PubMed  Google Scholar 

  • Frasca D et al (2012) A molecular mechanism for TNF-alpha-mediated downregulation of B cell responses. J Immunol 188(1):279–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaidano G, Foa R, Dalla-Favera R (2012) Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest 122(10):3432–3438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garaycoechea JI et al (2012) Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489(7417):571–575

    CAS  PubMed  Google Scholar 

  • Garcia-Manero G et al (2003) Chronic myelogenous leukemia: a review and update of therapeutic strategies. Cancer 98(3):437–457

    CAS  PubMed  Google Scholar 

  • Garinis GA et al (2008) DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 10(11):1241–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8(1):56–61

    CAS  PubMed  Google Scholar 

  • Goto M (2008) Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends 2(6):218–230

    PubMed  Google Scholar 

  • Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greaves MF, Wiemels J (2003) Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3(9):639–649

    CAS  PubMed  Google Scholar 

  • Guerrettaz LM, Johnson SA, Cambier JC (2008) Acquired hematopoietic stem cell defects determine B-cell repertoire changes associated with aging. Proc Natl Acad Sci U S A 105(33):11898–11902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  • Hao Y et al (2011) A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118(5):1294–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry CJ et al (2010) Declining lymphoid progenitor fitness promotes aging-associated leukemogenesis. Proc Natl Acad Sci U S A 107(50):21713–21718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry CJ, Marusyk A, DeGregori J (2011) Aging-associated changes in hematopoiesis and leukemogenesis: what’s the connection? Aging (Albany NY) 3(6):643–656

    CAS  Google Scholar 

  • Hindley C, Philpott A (2012) Co-ordination of cell cycle and differentiation in the developing nervous system. Biochem J 444(3):375–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinkal G, Parikh N, Donehower LA (2009a) Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS One 4(8), e6654

    PubMed Central  PubMed  Google Scholar 

  • Hinkal GW et al (2009b) Altered senescence, apoptosis, and DNA damage response in a mutant p53 model of accelerated aging. Mech Ageing Dev 130(4):262–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485

    CAS  PubMed  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    PubMed Central  PubMed  Google Scholar 

  • Jaskelioff M et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    CAS  PubMed  Google Scholar 

  • Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124(4):823–835

    CAS  PubMed  Google Scholar 

  • Kelly LM, Gilliland DG (2002) Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3:179–198

    CAS  PubMed  Google Scholar 

  • Kennedy SR, Loeb LA, Herr AJ (2012) Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev 133(4):118–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kent DG et al (2009) Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113(25):6342–6350

    CAS  PubMed  Google Scholar 

  • Keren Z et al (2011a) Chronic B cell deficiency from birth prevents age-related alterations in the B lineage. J Immunol 187(5):2140–2147

    CAS  PubMed  Google Scholar 

  • Keren Z et al (2011b) B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood 117(11):3104–3112

    CAS  PubMed  Google Scholar 

  • Kikushige Y et al (2011) Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20(2):246–259

    CAS  PubMed  Google Scholar 

  • King KY, Goodell MA (2011) Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 11(10):685–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447

    CAS  PubMed  Google Scholar 

  • Kohler A et al (2009) Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114(2):290–298

    PubMed Central  PubMed  Google Scholar 

  • Kollman C et al (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98(7):2043–2051

    CAS  PubMed  Google Scholar 

  • Kristinsson SY et al (2011) Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol 29(21):2897–2903

    PubMed Central  PubMed  Google Scholar 

  • Kuranda K et al (2011) Age-related changes in human hematopoietic stem/progenitor cells. Aging Cell 10(3):542–546

    CAS  PubMed  Google Scholar 

  • Laconi E, Doratiotto S, Vineis P (2008) The microenvironments of multistage carcinogenesis. Semin Cancer Biol 18:322–329

    CAS  PubMed  Google Scholar 

  • Lescale C et al (2010) Reduced EBF expression underlies loss of B cell potential of hematopoietic progenitors with age. Aging Cell 9(3):410–419

    CAS  PubMed  Google Scholar 

  • Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106(4):1479–1487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139

    CAS  PubMed  Google Scholar 

  • Losman JA et al (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339(6127):1621–1625

    CAS  PubMed  Google Scholar 

  • Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341(14):1051–1062

    CAS  PubMed  Google Scholar 

  • Lynch M (1988) The rate of polygenic mutation. Genet Res 51(2):137–148

    CAS  PubMed  Google Scholar 

  • Lynch M (2010a) Evolution of the mutation rate. Trends Genet 26(8):345–352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch M (2010b) Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A 107(3):961–968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malfertheiner P, Schutte K (2006) Smoking–a trigger for chronic inflammation and cancer development in the pancreas. Am J Gastroenterol 101(1):160–162

    CAS  PubMed  Google Scholar 

  • Marusyk A, DeGregori J (2008) Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations. Biochim Biophys Acta 1785(1):1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matioli GT (2002) BCR-ABL insufficiency for the transformation of human stem cells into CML. Med Hypotheses 59(5):588–589

    CAS  PubMed  Google Scholar 

  • Medawar P (1952) An unsolved problem of biology. H.K. Lewis, London

    Google Scholar 

  • Miller JP, Allman D (2003) The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 171(5):2326–2330

    CAS  PubMed  Google Scholar 

  • Miller JP, Allman D (2005) Linking age-related defects in B lymphopoiesis to the aging of hematopoietic stem cells. Semin Immunol 17(5):321–329

    CAS  PubMed  Google Scholar 

  • Milne CD, Paige CJ (2006) IL-7: a key regulator of B lymphopoiesis. Semin Immunol 18(1):20–30

    CAS  PubMed  Google Scholar 

  • Mirantes C, Passegue E, Pietras EM (2014) Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp Cell Res 329(2):248–254

    CAS  PubMed  Google Scholar 

  • Morrison SJ et al (1996) The aging of hematopoietic stem cells. Nat Med 2(9):1011–1016

    CAS  PubMed  Google Scholar 

  • Muller-Sieburg CE et al (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103(11):4111–4118

    CAS  PubMed  Google Scholar 

  • Mullighan CG et al (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453(7191):110–114

    CAS  PubMed  Google Scholar 

  • Mutter GL et al (2001) Molecular identification of latent precancers in histologically normal endometrium. Cancer Res 61(11):4311–4314

    CAS  PubMed  Google Scholar 

  • Naumov GN, Akslen LA, Folkman J (2006a) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5(16):1779–1787

    CAS  PubMed  Google Scholar 

  • Naumov GN et al (2006b) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325

    PubMed  Google Scholar 

  • Noda S, Ichikawa H, Miyoshi H (2009) Hematopoietic stem cell aging is associated with functional decline and delayed cell cycle progression. Biochem Biophys Res Commun 383(2):210–215

    CAS  PubMed  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    CAS  PubMed  Google Scholar 

  • Omatsu Y et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399

    CAS  PubMed  Google Scholar 

  • Pang WW et al (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108(50):20012–20017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peto R et al (1975) Cancer and ageing in mice and men. Br J Cancer 32(4):411–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pietras EM, Warr MR, Passegue E (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195(5):709–720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pietras EM et al (2014) Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med 211(2):245–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prensner JR, Chinnaiyan AM (2011) Metabolism unhinged: IDH mutations in cancer. Nat Med 17(3):291–293

    CAS  PubMed  Google Scholar 

  • Prieyl JA, LeBien TW (1996) Interleukin 7 independent development of human B cells. Proc Natl Acad Sci U S A 93(19):10348–10353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pronk CJ et al (2011) Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors. J Exp Med 208(8):1563–1570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puente XS et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475(7354):101–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quesada V et al (2011) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44(1):47–52

    PubMed  Google Scholar 

  • Randolph TR (2005) Chronic myelocytic leukemia–part I: history, clinical presentation, and molecular biology. Clin Lab Sci 18(1):38–48

    PubMed  Google Scholar 

  • Ratliff M et al (2010) In senescence, age-associated B cells secrete TNFalpha and inhibit survival of B-cell precursors. Aging Cell 12(2):303–311

    Google Scholar 

  • Rawlings DJ et al (1995) Long-term culture system for selective growth of human B-cell progenitors. Proc Natl Acad Sci U S A 92(5):1570–1574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Renehan AG, Roberts DL, Dive C (2008) Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem 114(1):71–83

    CAS  PubMed  Google Scholar 

  • Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316

    CAS  PubMed  Google Scholar 

  • Rossi DJ et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi DJ et al (2007a) Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 6(19):2371–2376

    CAS  PubMed  Google Scholar 

  • Rossi DJ et al (2007b) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725–729

    CAS  PubMed  Google Scholar 

  • Rozhok AI, Salstrom JL, DeGregori J (2014) Stochastic modeling indicates that aging and somatic evolution in the hematopoietic system are driven by non-cell-autonomous processes. Aging (Albany NY) 6(12):1033–1048

    Google Scholar 

  • Rubtsov AV et al (2011) Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c(+) B-cell population is important for the development of autoimmunity. Blood 118(5):1305–1315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubtsov AV et al (2013) TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunol Res 55(1–3):210–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rufer N et al (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190(2):157–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464(7288):520–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvioli S et al (2009) Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother 58(12):1909–1917

    CAS  PubMed  Google Scholar 

  • Sanders MA, Valk PJ (2013) The evolving molecular genetic landscape in acute myeloid leukaemia. Curr Opin Hematol 20(2):79–85

    CAS  PubMed  Google Scholar 

  • Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340(17):1330–1340

    CAS  PubMed  Google Scholar 

  • Serrano M, Blasco MA (2007) Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 8(9):715–722

    CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2002) p53: good cop/bad cop. Cell 110(1):9–12

    CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113(2):160–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713

    CAS  PubMed  Google Scholar 

  • Shaw AC et al (2010) Aging of the innate immune system. Curr Opin Immunol 22(4):507–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Signer RA et al (2007) Age-related defects in B lymphopoiesis underlie the myeloid dominance of adult leukemia. Blood 110(6):1831–1839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Signer RA et al (2008) Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev 22(22):3115–3120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silander OK, Tenaillon O, Chao L (2007) Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol 5(4), e94

    PubMed Central  PubMed  Google Scholar 

  • Simsek T et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Small D (2006) FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program 178–184

    Google Scholar 

  • Song Z et al (2010) Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice. Blood 115(8):1481–1489

    PubMed  Google Scholar 

  • Steinman RA (2002) Cell cycle regulators and hematopoiesis. Oncogene 21(21):3403–3413

    CAS  PubMed  Google Scholar 

  • Stephan RP, Reilly CR, Witte PL (1998) Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood 91(1):75–88

    CAS  PubMed  Google Scholar 

  • Sudo K et al (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192(9):1273–1280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun D et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14(5):673–688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takubo K et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402

    CAS  PubMed  Google Scholar 

  • Thakkar A et al (2013) The molecular mechanism of action of aspirin, curcumin and sulforaphane combinations in the chemoprevention of pancreatic cancer. Oncol Rep 29(4):1671–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda Y et al (2004) Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. J Exp Med 199(1):47–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda Y, Kondo M, Kelsoe G (2005) Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med 201(11):1771–1780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Zant G et al (1990) Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. J Exp Med 171(5):1547–1565

    PubMed  Google Scholar 

  • Vaziri H et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A 91(21):9857–9860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vickers M (1996) Estimation of the number of mutations necessary to cause chronic myeloid leukaemia from epidemiological data. Br J Haematol 94(1):1–4

    CAS  PubMed  Google Scholar 

  • Vijg J et al (2005) Aging and genome maintenance. Ann N Y Acad Sci 1055:35–47

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    CAS  PubMed  Google Scholar 

  • Wahlestedt M et al (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121(21):4257–4264

    CAS  PubMed  Google Scholar 

  • Warr MR et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494(7437):323–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130(1–2):46–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg R (2007) The biology of cancer (Chapter 11). Garland Science, New York

    Google Scholar 

  • Weinberger B et al (2008) Biology of immune responses to vaccines in elderly persons. Clin Infect Dis 46(7):1078–1084

    PubMed  Google Scholar 

  • Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22(11):1041–1050

    CAS  PubMed  Google Scholar 

  • Weksler ME, Szabo P (2000) The effect of age on the B-cell repertoire. J Clin Immunol 20(4):240–249

    CAS  PubMed  Google Scholar 

  • Weksler ME, Goodhardt M, Szabo P (2002) The effect of age on B cell development and humoral immunity. Springer Semin Immunopathol 24(1):35–52

    CAS  PubMed  Google Scholar 

  • Weng NP, Hathcock KS, Hodes RJ (1998) Regulation of telomere length and telomerase in T and B cells: a mechanism for maintaining replicative potential. Immunity 9(2):151–157

    CAS  PubMed  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Google Scholar 

  • Wilson A et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    CAS  PubMed  Google Scholar 

  • Wynford-Thomas D et al (1995) Does telomere shortening drive selection for p53 mutation in human cancer? Mol Carcinog 12(3):119–123

    CAS  PubMed  Google Scholar 

  • Xing Z et al (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108(7):2190–2197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamazaki S et al (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113(6):1250–1256

    CAS  PubMed  Google Scholar 

  • Yin T, Li L (2010) Fountain of Youth: aged blood-forming stem cells could be rejuvenated by young microenvironment. Cell Res 20(5):504–505

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James DeGregori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Henry, C.J., Rozhok, A.I., DeGregori, J. (2015). Hematopoietic Stem Cell Aging and Leukemogenesis. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_13

Download citation

Publish with us

Policies and ethics