Skip to main content

P-Type Lectins: Cation-Independent Mannose-6-Phosphate Reeptors

  • Chapter
  • First Online:
Animal Lectins: Form, Function and Clinical Applications

Abstract

Insulin and the insulin-like growth factors, IGF-I (IGF1) and –II (IGF2) are structurally related peptides that elicit a large number of similar biological effects in target cells. Three well-characterized receptor complexes bind one or more of these peptides with high affinity. Two of these receptors, denoted as type 1, are ligand-activated tyrosine kinases with similar heterotetrameric α2β2 subunit structures which bind insulin or IGF-1, respectively, with highest affinity. Ligand-stimulated tyrosine autophosphorylation of these receptors further activates their intrinsic tyrosine kinase activities both in vitro and in intact cells. Rapid signal transduction follows such receptor autophosphorylation and tyrosine kinase activation, leading to increased serine phosphorylation of many cell proteins and decreased serine phosphorylation of several others. A third receptor in this group binds IGF-1 and -2, lacks kinase activity and is denoted as type II IGF receptor (IGF2R). The cell surface receptor for IGF2 also functions as a cation-independent M6PR. Therefore, cation-independent mannose 6-phosphate receptor (CI-MPR) is also referred as insulin-like growth factor 2 receptor (IGF2R) or IGF2/MPR. The CI-MPR/IGF2R is a single transmembrane domain glycoprotein that plays a major role in the trafficking of lysosomal enzymes from the trans-Golgi network (TGN) to the endosomal-lysosomal (EL) system. This CI-MPR/IGF2R has also a potential role in growth factor maturation and clearance, and mediates IGF2-activated signal transduction through a G-protein-coupled mechanism. The IGF2R/CI-MPR rapidly recycles between the cell surface membrane and intracellular membrane compartments, providing for the rapid uptake of both IGF2 and M6P-linked lysosomal enzymes. Insulin action markedly increases the proportion of receptors in the plasma membrane and the uptake of bound ligands. Embryonic development and normal growth require exquisite control of IGFs (Dahms et al. 2008; Gary-Bobo et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexia C, Fallot G, Lasfer M et al (2004) An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol 68:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165:123–133

    Article  PubMed  CAS  Google Scholar 

  • Barois N, Bakke O (2005) The adaptor protein AP-4 as a component of the clathrin coat machinery: a morphological study. Biochem J 385:503–510, 17067–17074

    Article  PubMed  CAS  Google Scholar 

  • Blanchard F, Duplomb L, Raher S et al (1999) Mannose 6-phosphate/insulin-like growth factor ii receptor mediates internalization and degradation of leukemia inhibitory factor but not signal transduction. J Biol Chem 274:24685–24693

    Article  PubMed  CAS  Google Scholar 

  • Bohnsack RN, Song X, Olson LJ et al (2009) Cation-independent mannose 6-phosphate receptor: a composite of distinct phosphomannosyl binding sites. J Biol Chem 284:35215–35226

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS (2004) The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 5:23–32

    Article  PubMed  CAS  Google Scholar 

  • Brady RO (2006) Enzyme replacement for lysosomal diseases. Annu Rev Med 57:283–296

    Article  PubMed  CAS  Google Scholar 

  • Braulke T (1999) Type-2 IGF receptor: a multi-ligand binding protein. Horm Metab Res 3:242–246

    Article  Google Scholar 

  • Bredin CG, Liu Z, Hauzenberger D et al (1999) Growth-factor-dependent migration of human lung-cancer cells. Int J Cancer 82:338–345

    Article  PubMed  CAS  Google Scholar 

  • Breuer P, Korner C, Boker C et al (1997) Serine phosphorylation site of the 46-kDa mannose 6-phosphate receptor is required for transport to the plasma membrane in Madin–Darby canine kidney and mouse fibroblast cells. Mol Biol Cell 8:567–576

    PubMed  CAS  Google Scholar 

  • Brown J, Esnouf RM, Jones MA et al (2002) Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J 21:1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Delaine C, Zaccheo OJ et al (2008) Structure and functional analysis of the IGF2/IGF2R interaction. EMBO J 27:265–276

    Article  PubMed  CAS  Google Scholar 

  • Brunetti CR, Burke RL, Hoflack B et al (1995) Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission. J Virol 69:3517–3528

    PubMed  CAS  Google Scholar 

  • Brunetti CR, Burke RL, Kornfeld S, Gregory W, Masiarz FR, Dingwell KS, Johnson DC (1994) Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem 269:17067–17074

    PubMed  CAS  Google Scholar 

  • Brunetti CR, Dingwell KS, Wale C et al (1998) Herpes simplex virus gD and virions accumulate in endosomes by mannose 6-phosphate-dependent and -independent mechanisms. J Virol 72:3330–3339

    PubMed  CAS  Google Scholar 

  • Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    PubMed  CAS  Google Scholar 

  • Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021

    Article  PubMed  CAS  Google Scholar 

  • Byrd JC, MacDonald RG (2000) Mechanisms for high affinity mannose 6-phosphate ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem 275:18638–18646

    Article  PubMed  CAS  Google Scholar 

  • Cacia J, Quan CP, Pai R, Frenz J (1998) Human DNase I contains mannose 6-phosphate and binds the cation-independent mannose 6-phosphate receptor. Biochemistry 37:15154–15161

    Article  PubMed  CAS  Google Scholar 

  • Canfield WM, Kornfeld S (1989) The chicken liver cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for insulin-like growth factor II. J Biol Chem 264:7100–7103

    PubMed  CAS  Google Scholar 

  • Canfield WM, Johnson KF, Ye RD et al (1991) Localization of the signal for rapid internalization of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor to amino acids 24-29 of the cytoplasmic tail. J Biol Chem 266:5682–5688

    PubMed  CAS  Google Scholar 

  • Carlton J, Bujny M, Peter BJ et al (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol 14:1791–1800

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Bujny MV, Peter BJ et al (2005) Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci 118:4527–4539

    Article  PubMed  CAS  Google Scholar 

  • Chang MH, Kuo WW, Chen RJ et al (2008) IGF2/mannose 6-phosphate receptor activation induces metalloproteinase-9 matrix activity and increases plasminogen activator expression in H9c2 cardiomyoblast cells. J Mol Endocrinol 41:65–74

    Article  PubMed  CAS  Google Scholar 

  • Chapuy B, Tikkanen R, Mühlhausen C et al (2008) AP-1 and AP-3 mediate sorting of melanosomal and lysosomal membrane proteins into distinct post-golgi trafficking pathways. Traffic 9:1157–1172

    Article  PubMed  CAS  Google Scholar 

  • Chavez CA, Bohnsack RN, Kudo M et al (2007) Domain 5 of the cation-independent mannose 6-phosphate receptor preferentially binds phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester). Biochemistry 46:12604–12617

    Article  PubMed  CAS  Google Scholar 

  • Chen HJ, Remmler J, Delaney JC, Messner DJ, Lobel P (1993) Mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor. A consensus casein kinase II site followed by 2 leucines near the carboxyl terminus is important for intracellular targeting of lysosomal enzymes. J Biol Chem 268:22338–22346

    PubMed  CAS  Google Scholar 

  • Chen HJ, Yuan J, Lobel P (1997) Systematic mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor cytoplasmic domain. An acidic cluster containing a key aspartate is important for function in lysosomal enzyme sorting. J Biol Chem 272:7003–7012

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Ge Y, Landman N et al (2002) Decreased expression of the mannose 6-phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells. BMC Cancer 2:18

    Article  PubMed  Google Scholar 

  • Chen JJ, Zhu Z, Gershon AA et al (2004) Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell 119:915–926

    Article  PubMed  CAS  Google Scholar 

  • Choudhury R, Diao A, Zhang F et al (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    Article  PubMed  CAS  Google Scholar 

  • Chu CH, Tzang BS, Chen LM et al (2008) IGF2/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Gαq interaction and protein kinase C-α/CaMKII activation in H9c2 cardiomyoblast cells. J Endocrinol 197:381–390

    Article  PubMed  CAS  Google Scholar 

  • Dahms NM (1996) Insulin-like growth factor II/cation-independent mannose 6-phosphate receptor and lysosomal enzyme recognition. Biochem Soc Trans 24:136–141

    PubMed  CAS  Google Scholar 

  • Dahms NM, Hancock MK (2002) P-type lectins. Biochim Biophys Acta 1572:317–340

    Article  PubMed  CAS  Google Scholar 

  • Dahms NM, Lobel P, Breitmeyer J et al (1987) 46 kD mannose 6-phosphate receptor: cloning, expression, and homology to the 215 kd mannose 6-phosphate receptor. Cell 50:181–192

    Article  PubMed  CAS  Google Scholar 

  • Dahms NM, Brzycki-Wessell MA, Ramanujam KS, Seetharam B (1993a) Characterization of mannose 6-phosphate receptors (MPRs) from opossum liver: opossum cation-independent MPR binds insulin-like growth factor-II. Endocrinology 133:440–446

    Article  PubMed  CAS  Google Scholar 

  • Dahms NM, Rose PA, Molkentin JD et al (1993b) The bovine mannose 6-phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding. J Biol Chem 268:5457–5463

    PubMed  CAS  Google Scholar 

  • Dahms NM, Wick DA, Brzycki-Wessell MA (1994) The bovine mannose 6-phosphate/insulin-like growth factor II receptor. Localization of the insulin-like growth factor II binding site to domains 5-11. J Biol Chem 269:3802–3809

    PubMed  CAS  Google Scholar 

  • Dahms NM, Seetharam B, Wick DA (1996) Expression of insulin-like growth factor (IGF)-I receptors, IGF2/cation-independent mannose 6-phosphate receptors (CI-MPRs), and cation-dependent MPRs in polarized human intestinal Caco-2 cells. Biochim Biophys Acta 1279:84–92

    Article  PubMed  Google Scholar 

  • Dahms NM, Olson LJ, Kim JJ (2008) Strategies for carbohydrate recognition by the mannose 6-phosphate receptors. Glycobiology 18:664–678

    Article  PubMed  CAS  Google Scholar 

  • Damen E, Krieger E, Nielsen JE et al (2006) The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem J 398:399–409

    Article  PubMed  CAS  Google Scholar 

  • De Souza AT, Hankins GR, Washington MK, Orton TC, Jirtle RL (1995) M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat Genet 11:447–449

    Article  PubMed  Google Scholar 

  • Delaine C, Alvino CL, McNeil KA et al (2007) A novel binding site for the human insulin-like growth factor-II (IGF2)/mannose 6-phosphate receptor on IGF2. J Biol Chem 282:18886–18894

    Article  PubMed  CAS  Google Scholar 

  • Dennis PA, Rifkin DB (1991) Cellular activation of latent transforming growth factor β requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci USA 88:580–584

    Article  PubMed  CAS  Google Scholar 

  • Derby MC, Lieu ZZ, Brown D et al (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8:758–773

    Article  PubMed  CAS  Google Scholar 

  • Devi GR, Byrd JC, Slentz DH et al (1998) An insulin-like growth factor ii (IGF2) affinity-enhancing domain localized within extracytoplasmic repeat 13 of the IGF2/mannose 6-phosphate receptor. Mol Endocrinol 12:166–172

    Article  Google Scholar 

  • Díaz E, Pfeffer SR (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93:433–449

    Article  PubMed  Google Scholar 

  • Dicioccio RA, Miller AL (1992) Binding receptors for α-L-fucosidase in human B-lymphoid cell lines. Glycoconj J 9:56–62

    Article  PubMed  CAS  Google Scholar 

  • Doray B, Bruns K, Ghosh P, Kornfeld SA (2002) Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif. Proc Natl Acad Sci USA 99:8072–8077

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(Suppl 16):15–8

    PubMed  CAS  Google Scholar 

  • Forbes BE, McNeil KA, Scott CD et al (2001) Contribution of residues A54 and L55 of the human insulin-like growth factor-II (IGF2) A domain to Type 2 IGF receptor binding specificity. Growth Factors 19:163–173

    Article  CAS  Google Scholar 

  • Friedl R, Rottmann O (1994) Assignment of the cation independent mannose 6-phosphate/insulin-like growth factor II receptor to bovine chromosome 9q27-28 by fluorescent in situ hybridization. Anim Genet 25:191–193

    Article  PubMed  CAS  Google Scholar 

  • Garmroudi F, MacDonald RG (1994) Localization of the insulin-like growth factor II (IGF2) binding/cross-linking site of the IGF2/mannose 6-phosphate receptor to extracellular repeats 10-11. J Biol Chem 269:26944–26952

    PubMed  CAS  Google Scholar 

  • Gary-Bobo M, Nirdé P, Jeanjean A et al (2007) Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem 14:2945–2953

    Article  PubMed  CAS  Google Scholar 

  • Gasanov U, Koina C, Beagley KW, Aitken RJ, Hansbro PM (2006) Identification of the insulin-like growth factor II receptor as a novel receptor for binding and invasion by Listeria monocytogenes. Infect Immun 74:566–577

    Article  PubMed  CAS  Google Scholar 

  • Ghahary A, Tredget EE, Mi L, Yang L (1999) Cellular response to latent TGF-beta1 is facilitated by insulin-like growth factor-II/mannose-6-phosphate receptors on MS-9 cells. Exp Cell Res 251:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Kornfeld S (2004) The GGA proteins: key players in protein sorting at the trans-Golgi network. Eur J Cell Biol 83:257–262

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Dahms NM, Kornfeld S (2003a) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Griffith J, Geuze HJ, Kornfeld S (2003b) Mammalian GGAs act together to sort mannose 6-phosphate receptors. J Cell Biol 163:755–766

    Article  PubMed  CAS  Google Scholar 

  • Godár S, Horejsi V, Weidle UH et al (1999) M6P/IGF2-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-β1. Eur J Immunol 29:1004–1013

    Article  PubMed  Google Scholar 

  • Gokool S, Tattersall D, Seaman MN (2007) EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8:1873–1886

    Article  PubMed  CAS  Google Scholar 

  • Green PJ, Ferguson MA, Robinson PJ, Feizi T (1995) The cation-independent mannose-6-phosphate receptor binds to soluble GPI-linked proteins via mannose-6-phosphate. FEBS Lett 360:34–38

    Article  PubMed  CAS  Google Scholar 

  • Griffin CT, Trejo J, Magnuson T (2005) Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2. Proc Natl Acad Sci USA 102:15173–15177

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G, Hollinshead R, Hemmings BA, Nigg EA (1990a) Ultrastructural localization of the regulatory (RII) subunit of cyclic AMP-dependent protein kinase to subcellular compartments active in endocytosis and recycling of membrane receptors. J Cell Sci 96:691–703

    PubMed  CAS  Google Scholar 

  • Griffiths G, Matteoni R, Back R, Hoflack B (1990b) Characterization of the cation-independent mannose 6-phosphate receptor-enriched prelysosomal compartment in NRK cells. J Cell Sci 95:441–461

    PubMed  CAS  Google Scholar 

  • Groskopf JC, Syu LJ, Saltiel AR, Linzer DI (1997) Proliferin induces endothelial cell chemotaxis through a G protein-coupled, mitogen-activated protein kinase-dependent pathway. Endocrinology 138:2835–2840

    Article  PubMed  CAS  Google Scholar 

  • Hambleton S (2005) Chickenpox. Curr Opin Infect Dis 18:235–40

    Article  PubMed  Google Scholar 

  • Hancock MK, Haskins DJ, Sun G, Dahms NM (2002a) Identification of residues essential for carbohydrate recognition by the insulin-like growth factor ii/mannose 6-phosphate receptor. J Biol Chem 277:11255–11264

    Article  PubMed  CAS  Google Scholar 

  • Hancock MK, Yammani RD, Dahms NM (2002b) Localization of the carbohydrate recognition sites of the insulin-like growth factor II/mannose 6-phosphate receptor to domains 3 and 9 of the extracytoplasmic region. J Biol Chem 277:47205–47212

    Article  PubMed  CAS  Google Scholar 

  • Hara S, Kiyokawa E, Iemura S et al (2008) The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport. Mol Biol Cell 19:3823–3835

    Article  PubMed  CAS  Google Scholar 

  • Harasaki K, Lubben NB, Harbour M et al (2005) Sorting of major cargo glycoproteins into clathrin-coated vesicles. Traffic 6:1014–1026

    Article  PubMed  CAS  Google Scholar 

  • Harper J, Burns JL, Foulstone EJ et al (2006) Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting. Cancer Res 66:1940–1948

    Article  PubMed  CAS  Google Scholar 

  • Hébert E (2006) Mannose-6-phosphate/insulin-like growth factor II receptor expression and tumor development. Biosci Rep 26:7–17

    Article  PubMed  CAS  Google Scholar 

  • Ikushima H, Munakata Y, Ishii T et al (2000) Internalization of CD26 by mannose 6-phosphate/insulin-like growth factor II receptor contributes to T cell activation. Proc Natl Acad Sci USA 97:8439–8444

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto KS, Barber CL (2007) Radiation-induced posttranscriptional control of M6P/IGF2r expression in breast cancer cell lines. Mol Carcinog 46:497–502

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Linzer DI (1997) Proliferin transport and binding in the mouse fetus. Endocrinology 138:149–155

    Article  PubMed  CAS  Google Scholar 

  • Kang JX, Li Y, Leaf A (1997) Mannose-6-phosphate/insulin-like growth factor-II receptor is a receptor for retinoic acid. Proc Natl Acad Sci USA 94:13671–13676

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Misra S, Puertollano R et al (2002) Phosphoregulation of sorting signal-VHS domain interactions by a direct electrostatic mechanism. Nat Struct Biol 9:532–536

    PubMed  CAS  Google Scholar 

  • Kiess W, Blickenstaff GD, Sklar MM et al (1988) Biochemical evidence that the type II insulin-like growth factor receptor is identical to the cation-independent mannose 6-phosphate receptor. J Biol Chem 263:9339–9344

    PubMed  CAS  Google Scholar 

  • Killian JK, Oka Y, Jang HS, Fu X, Waterland RA, Sohda T, Sakaguchi S, Jirtle RL (2001) Mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) variants in American and Japanese populations. Hum Mutat 18:25–31

    Article  PubMed  CAS  Google Scholar 

  • Kölsch H, Ptok U, Majores M et al (2004) Putative association of polymorphism in the mannose 6-phosphate receptor gene with major depression and Alzheimer’s disease. Psychiatr Genet 14:97–100

    Article  PubMed  Google Scholar 

  • Kong FM, Anscher MS, Sporn TA et al (2001) Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor (M6P/IGF2R) locus predisposes patients to radiation-induced lung injury. Int J Radiat Oncol Biol Phys 49:35–41

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 61:307–330

    Article  PubMed  CAS  Google Scholar 

  • Kreiling JL, Byrd JC, Deisz RJ et al (2003) Binding of urokinase-type plasminogen activator receptor (uPAR) to the mannose 6-phosphate/insulin-like growth factor II receptor: contrasting interactions of full-length and soluble forms of uPAR. J Biol Chem 278:20628–20637

    Article  PubMed  CAS  Google Scholar 

  • Kreiling JL, Byrd JC, Macdonald RG (2005) Domain interactions of the mannose 6-phosphate/insulin-like growth factor II receptor. J Biol Chem 280:21067–21077

    Article  PubMed  CAS  Google Scholar 

  • Krise JP, Sincock PM, Orsel JG, Pfeffer SR (2000) Quantitative analysis of TIP47-receptor cytoplasmic domain interactions: implications for endosome-to-trans Golgi network trafficking. J Biol Chem 275:25188–25193

    Article  PubMed  CAS  Google Scholar 

  • Kun Z, Haiyun Z, Meng W et al (2008) Dietary ω-3 polyunsaturated fatty acids can inhibit expression of granzyme B, perforin, and cation-independent mannose 6-phosphate/insulin-like growth factor receptor in rat model of small bowel transplant chronic rejection. JPEN J Parenter Enteral Nutr 32:12–17

    Article  PubMed  Google Scholar 

  • Kurschus FC, Bruno R, Fellows E et al (2005) Membrane receptors are not required to deliver granzyme B during killer cell attack. Blood 105:2049–2058

    Article  PubMed  CAS  Google Scholar 

  • Laureys G, Barton DE, Ullrich A, Francke U (1988) Chromosomal mapping of the gene for the type II insulin-like growth factor receptor/cation-independent mannose 6-phosphate receptor in man and mouse. Genomics 3:224–229

    Article  PubMed  CAS  Google Scholar 

  • Le Borgne R, Hoflack B (1997) Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TGN. J Cell Biol 137:335–345

    Article  PubMed  Google Scholar 

  • Le Borgne R, Hoflack B (1998) Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim Biophys Acta 1404:195–209

    Article  PubMed  Google Scholar 

  • Le Borgne R, Griffiths G, Hoflack B (1996) Mannose 6-phosphate receptors and ADP-ribosylation factors cooperate for high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem 271:2162–2170

    Article  PubMed  Google Scholar 

  • Le Borgne R, Alconada A, Bauer U, Hoflack B (1998) The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J Biol Chem 273:29451–29461

    Article  PubMed  Google Scholar 

  • Lee SJ, Nathans D (1988) Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J Biol Chem 263:3521–3527

    PubMed  CAS  Google Scholar 

  • Lee JS, Weiss J, Martin JL, Scott CD (2003) Increased expression of the mannose 6-phosphate/insulin-like growth factor-II receptor in breast cancer cells alters tumorigenic properties in vitro and in vivo. Int J Cancer 107:564–570

    Article  PubMed  CAS  Google Scholar 

  • Lefrançois S, McCormick PJ (2007) The Arf GEF GBF1 is required for GGA recruitment to Golgi membranes. Traffic 8:1440–1451

    Article  PubMed  CAS  Google Scholar 

  • Leksa V, Godár S, Cebecauer M et al (2002) The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J Biol Chem 277:40575–40582

    Article  PubMed  CAS  Google Scholar 

  • Lemansky P, Fester I, Smolenova E et al (2007) The cation-independent mannose 6-phosphate receptor is involved in lysosomal delivery of serglycin. J Leukoc Biol 81:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Li J, Sahagian GG (2004) Demonstration of tumor suppression by mannose 6-phosphate/insulin-like growth factor 2 receptor. Oncogene 23:9359–9368

    Article  PubMed  CAS  Google Scholar 

  • Lin SX, Mallet WG, Huang AY et al (2004) Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a subpopulation of late endosomes. Mol Biol Cell 15:721–733

    Article  PubMed  CAS  Google Scholar 

  • Linnell J, Groeger G, Hassan AB (2001) Real time kinetics of insulin-like growth factor II (IGF2) interaction with the IGF2/mannose 6-phosphate receptor: the effects of domain 13 and pH. J Biol Chem 276:23986–23991

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Mittanck DW, Kim S, Rotwein P (1995) Control of insulin-like growth factor-II/mannose 6-phosphate receptor gene transcription by proximal promoter elements. Mol Endocrinol 9:1477–1487

    Article  PubMed  CAS  Google Scholar 

  • Lobel P, Dahms NM, Breitmeyer J et al (1987) Cloning of the bovine 215-kDa cation-independent mannose 6-phosphate receptor. Proc Natl Acad Sci USA 84:2233–2237

    Article  PubMed  CAS  Google Scholar 

  • Lobel P, Dahms NM, Kornfeld S (1988) Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor. J Biol Chem 263:2563–2570

    PubMed  CAS  Google Scholar 

  • Lobel P, Fujimoto K, Ye RD, Griffiths G, Kornfeld S (1989) Mutations in the cytoplasmic domain of the 275 kD mannose 6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis. Cell 57:787–796

    Article  PubMed  CAS  Google Scholar 

  • Ludwig T, Munier-Lehmann H, Bauer U et al (1994) Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts. EMBO J 13:3430–3437

    PubMed  CAS  Google Scholar 

  • Ludwig T, Eggenschwiler J, Fisher P et al (1996) Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev Biol 177:517–535

    Article  PubMed  CAS  Google Scholar 

  • MacDonald RG, Pfeffer SR, Coussens L et al (1988) A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science 239(4844):1134–1137

    Article  PubMed  CAS  Google Scholar 

  • Mari M, Bujny MV, Zeuschner D, Geuze HJ et al (2008) SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9:380–393

    Article  PubMed  CAS  Google Scholar 

  • Marjomäki VS, Huovila AP, Surkka MA, Jokinen I, Salminen A (1990) Lysosomal trafficking in rat cardiac myocytes. J Histochem Cytochem 38:1155–1164

    Article  PubMed  Google Scholar 

  • Marron-Terada PG, Brzycki-Wessell MA, Dahms NM (1998) The Two mannose 6-phosphate binding sites of the insulin-like growth factor-II/mannose 6-phosphate receptor display different ligand binding properties. J Bio Chem 273:22358–22366

    Article  CAS  Google Scholar 

  • Marron-Terada PG, Hancock MK, Haskins DJ, Dahms NM (2000) Recognition of Dictyostelium discoideum lysosomal enzymes is conferred by the amino-terminal carbohydrate binding site of the insulin-like growth factor II/mannose 6-phosphate receptor. Biochemistry 39:2243–2253

    Article  PubMed  CAS  Google Scholar 

  • Mathews PM, Guerra CB, Jiang Y et al (2002) Alzheimer’s disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Aβ secretion: role for altered lysosomal hydrolase distribution in β-amyloidogenesis. J Biol Chem 277:5299–5307

    Article  PubMed  CAS  Google Scholar 

  • Méresse S, Hoflack B (1993) Phosphorylation of the cation-independent mannose 6-phosphate receptor is closely associated with its exit from the trans-Golgi network. J Cell Biol 120:67–75

    Article  PubMed  Google Scholar 

  • Méresse S, Ludwig T, Frank R et al (1990) Phosphorylation of the cytoplasmic domain of the bovine cation-independent mannose 6-phosphate receptor. Serines 2421 and 2492 are the targets of a casein kinase II associated to the Golgi-derived HAI adaptor complex. J Biol Chem 265:18833–18842

    PubMed  Google Scholar 

  • Méresse S, Gorvel JP, Chavrier P (1995) The rab7 GTPase resides on a vesicular compartment connected to lysosomes. J Cell Sci 108:3349–3358

    PubMed  Google Scholar 

  • Mesa R, Salomón C, Roggero M et al (2001) Rab22a affects the morphology and function of the endocytic pathway. J Cell Sci 114:4041–4049

    PubMed  CAS  Google Scholar 

  • Mesa R, Magadán J, Barbieri A et al (2005) Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus. Exp Cell Res 304:339–353

    Article  PubMed  CAS  Google Scholar 

  • Metcalf DJ, Calvi AA, Seaman MNJ et al (2008) Loss of the Batten disease gene CLN3 prevents exit from the TGN of the mannose 6-phosphate receptor. Traffic 9:1905–1914

    Article  PubMed  CAS  Google Scholar 

  • Misra S, Puertollano R, Kato Y et al (2002) Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415(6874):933–937

    Article  PubMed  CAS  Google Scholar 

  • Miwako I, Yamamoto A, Kitamura T, Nagayama K, Ohashi M (2001) Cholesterol requirement for cation-independent mannose 6-phosphate receptor exit from multivesicular late endosomes to the Golgi. J Cell Sci 114:1765–1776

    PubMed  CAS  Google Scholar 

  • Mordue DG, Sibley LD (1997) Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanism of entry. J Immunol 159:4452–4459

    PubMed  CAS  Google Scholar 

  • Morgan DO, Edman JC, Standring DN et al (1987) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329:301–307

    Article  PubMed  CAS  Google Scholar 

  • Motyka B, Korbutt G, Pinkoski MJ et al (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103:491–500

    Article  PubMed  CAS  Google Scholar 

  • Munier-Lehmann H, Mauxion F, Bauer U et al (1996a) Re-expression of the mannose 6-phosphate receptors in receptor-deficient fibroblasts. Complementary function of the two mannose 6-phosphate receptors in lysosomal enzyme targeting. J Biol Chem 271:15166–15174

    Article  PubMed  CAS  Google Scholar 

  • Munier-Lehmann H, Mauxion F, Hoflack B (1996b) Function of the two mannose 6-phosphate receptors in lysosomal enzyme transport. Biochem Soc Trans 24:133–136

    PubMed  CAS  Google Scholar 

  • Murayama Y, Okamoto T, Ogata E et al (1990) Distinctive regulation of the functional linkage between the human cation-independent mannose 6-phosphate receptor and GTP-binding proteins by insulin-like growth factor II and mannose 6-phosphate. J Biol Chem 265:17456–17462

    PubMed  CAS  Google Scholar 

  • Nguyen G, Contrepas A (2008) The (pro)renin receptors. J Mol Med 86:643–646

    Article  PubMed  CAS  Google Scholar 

  • Nicoziani P, Vilhardt F, Llorente A et al (2000) Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose 6-phosphate receptor. Mol Biol Cell 11:481–495

    PubMed  CAS  Google Scholar 

  • Nishiura T, Karasuno T, Yoshida H et al (1996) Functional role of cation-independent mannose 6-phosphate/insulin-like growth factor II receptor in cell adhesion and proliferation of a human myeloma cell line OPM-2. Blood 88:3546–3554

    PubMed  CAS  Google Scholar 

  • Norden AG, Gardner SC, Van’t Hoff W et al (2008) Lysosomal enzymuria is a feature of hereditary Fanconi syndrome and is related to elevated CI-mannose-6-P-receptor excretion. Nephrol Dial Transplant 23:2795–2803

    Article  PubMed  CAS  Google Scholar 

  • Nykjaer A, Christensen EI, Vorum H et al (1998) Mannose 6-phosphate/insulin-like growth factor-II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J Cell Biol 141:815–828

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Hancock MK, Dix D, Kim J-JP, Dahms NM (1999a) Mutational analysis of the binding site residues of the bovine cation-dependent mannose 6-phosphate receptor. J Biol Chem 274:36905–36911

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Zhang J, Lee YC, Dahms NM, Kim J-JP (1999b) Structural basis for recognition of phosphorylated high mannose oligosaccharides by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 274:29889–29896

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Zhang J, Dahms NM et al (2002) Twists and turns of the CD-MPR: ligand-bound versus ligand-free receptor. J Biol Chem 277:10156–10161

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Dahms NM, Kim JJ (2004a) The N-terminal carbohydrate recognition site of the cation-independent mannose 6-phosphate receptor. J Biol Chem 279:34000–34009

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Yammani RD, Dahms NM, Kim JJ (2004b) Structure of uPAR, plasminogen, and sugar-binding sites of the 300 kDa mannose 6-phosphate receptor. EMBO J 23:2019–2028

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Hindsgaul O, Dahms NM, Kim JJ (2008) Structural insights into the mechanism of pH-dependent ligand binding and release by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 283:10124–10134

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Peterson FC, Castonguay A et al (2010) Structural basis for recognition of phosphodiestercontaining lysosomal enzymes by the cationindependent mannose 6-phosphate receptor. Proc Natl Acad Sci USA 107:12493–12498

    Article  PubMed  CAS  Google Scholar 

  • Orsel JG, Sincock PM, Krise JP et al (2000) Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc Natl Acad Sci USA 97:9047–9051

    Article  PubMed  CAS  Google Scholar 

  • Oshima A, Nolan CM, Kyle JW et al (1988) The human cation-independent mannose 6-phosphate receptor. Cloning and sequence of the full-length cDNA and expression of functional receptor in COS cells. J Biol Chem 263:2553–2562

    PubMed  CAS  Google Scholar 

  • Park JE, Lopez JM, Cluett EB, Brown WJ (1991) Identification of a membrane glycoprotein found primarily in the prelysosomal endosome compartment. J Cell Biol 112:245–255

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Prydz K, Bomsel M, Simons K, Griffiths G (1989) Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J Cell Biol 109:3259–3272

    Article  PubMed  CAS  Google Scholar 

  • Pavelić K, Kolak T, Kapitanović S et al (2003) Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R). J Pathol 201:430–438

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Victoria FJ, Mardones GA, Bonifacino JS (2008) Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to Lysosomes. Mol Biol Cell 19:2350–2362

    Article  PubMed  CAS  Google Scholar 

  • Prydz K, Brändli AW, Bomsel M, Simons K (1990) Surface distribution of the mannose 6-phosphate receptors in epithelial Madin-Darby canine kidney cells. J Biol Chem 265:12629–12635

    PubMed  CAS  Google Scholar 

  • Puertollano R, Bonifacino JS (2004) Interactions of GGA3 with the ubiquitin sorting machinery. Nat Cell Biol 6:244–251

    Article  PubMed  CAS  Google Scholar 

  • Puertollano R, Aguilar RC, Gorshkova I et al (2001) Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292(5522):1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Qian M, Sleat DE, Zheng H, Moore D, Lobel P (2008) Proteomics analysis of serum from mutant mice reveals lysosomal proteins selectively transported by each of the two mannose 6-phosphate receptors. Mol Cell Proteomics 7:58–70

    PubMed  CAS  Google Scholar 

  • Raiborg C, Malerød L, Pedersen NM, Stenmark H (2008) Differential functions of Hrs and ESCRT proteins in endocytic membrane trafficking. Exp Cell Res 314:801–813

    Article  PubMed  CAS  Google Scholar 

  • Reaves BJ, Row PE, Bright NA, Luzio JP, Davidson HW (2000) Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies. J Cell Sci 113:4099–4108

    PubMed  CAS  Google Scholar 

  • Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131:770–783

    Article  PubMed  CAS  Google Scholar 

  • Reddy ST, Chai W, Childs RA, Page JD, Feizi T, Dahms NM (2004) Identification of a low affinity mannose 6-phosphate-binding site in domain 5 of the cation-independent mannose 6-phosphate receptor. J Biol Chem 279:38658–38667

    Article  PubMed  CAS  Google Scholar 

  • Rey JM, Theillet C, Brouillet JP, Rochefort H (2000) Stable amino-acid sequence of the mannose-6-phosphate/insulin-like growth-factor-II receptor in ovarian carcinomas with loss of heterozygosity and in breast-cancer cell lines. Int J Cancer 85:466–473

    Article  PubMed  CAS  Google Scholar 

  • Roberts DL, Weix DJ, Dahms NM, Kim J-JP (1998) Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Cell 93:639–648

    Article  PubMed  CAS  Google Scholar 

  • Roche P, Brown J, Denley A, Forbes BE, Wallace JC, Jones EY, Esnouf RM (2006) Computational model for the IGF2/IGF2r complex that is predictive of mutational and surface plasmon resonance data. Proteins 64:758–768

    Article  PubMed  CAS  Google Scholar 

  • Rohrer J, Schweizer A, Johnson KF, Kornfeld S (1995) A determinant in the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor prevents trafficking to lysosomes. J Cell Biol 130:1297–1306

    Article  PubMed  CAS  Google Scholar 

  • Rojas R, Kametaka S, Haft CR, Bonifacino JS (2007) Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 27:1112–1124

    Article  PubMed  CAS  Google Scholar 

  • Runquist EA, Havel RJ (1991) Acid hydrolases in early and late endosome fractions from rat liver. J Biol Chem 266:22557–22563

    PubMed  CAS  Google Scholar 

  • Sakano K, Enjoh T, Numata F et al (1991) The design, expression, and characterization of human insulin-like growth factor II (IGF2) mutants specific for either the IGF2/cation-independent mannose 6-phosphate receptor or IGF-I receptor. J Biol Chem 266:20626–20635

    PubMed  CAS  Google Scholar 

  • Salminen A, Marjomäki V, Tolonen U, Myllylä VV (1988) Phosphomannosyl receptors of lysosomal enzymes of skeletal muscle in neuromuscular diseases. Acta Neurol Scand 77:461–467

    Article  PubMed  CAS  Google Scholar 

  • Saris JJ, Derkx FH, De Bruin RJ et al (2001) High-affinity prorenin binding to cardiac man-6-P/IGF2 receptors precedes proteolytic activation to renin. Am J Physiol Heart Circ Physiol 280:H1706–H1715

    PubMed  CAS  Google Scholar 

  • Schaffer BS, Lin MF, Byrd JC et al (2003) Opposing roles for the insulin-like growth factor (IGF)-II and mannose 6-phosphate (Man-6-P) binding activities of the IGF2/Man-6-P receptor in the growth of prostate cancer cells. Endocrinology 144:955–966

    Article  PubMed  CAS  Google Scholar 

  • Schu P (2005) Adaptor Proteins in Lysosomal Biogenesis. In: Saftig P (ed) Lysosomes. Spriger, Boston

    Google Scholar 

  • Scott CD, Firth SM (2004) The role of the M6P/IGF2 receptor in cancer: tumor suppression or garbage disposal? Horm Metab Res 36:261–271

    Article  PubMed  CAS  Google Scholar 

  • Scott GK, Gu F, Crump CM et al (2003) The phosphorylation state of an autoregulatory domain controls PACS-1-directed protein traffic. EMBO J 22:6234–6244

    Article  PubMed  CAS  Google Scholar 

  • Scott GK, Fei H, Thomas L et al (2006) A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking. EMBO J 25:4423–4435

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165:111–122

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN (2007) Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 120:2378–2389

    Article  PubMed  CAS  Google Scholar 

  • Shiba T, Takatsu H, Nogi T et al (2002) Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415(6874):937–941

    Article  PubMed  CAS  Google Scholar 

  • Sivaramakrishna Y, Amancha PK, Siva Kumar N (2009) Reptilian MPR 300 is also the IGF2R: cloning, sequencing and functional characterization of the IGF2 binding domain. Int J Biol Macromol 44:435–440

    Article  PubMed  CAS  Google Scholar 

  • Sohar I, Sleat D, Gong Liu C et al (1998) Mouse mutants lacking the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor are impaired in lysosomal enzyme transport: comparison of cation-independent and cation-dependent mannose 6-phosphate receptor-deficient mice. Biochem J 330:903–908

    PubMed  CAS  Google Scholar 

  • Stöckli J, Höning S, Rohrer J (2004) The acidic cluster of the CK2 site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) but not its phosphorylation is required for GGA1 and AP-1 binding. J Biol Chem 279:23542–23549

    Article  PubMed  CAS  Google Scholar 

  • Stoorvogel W, Strous GJ, Geuze HJ et al (1991) Late endosomes derive from early endosomes by maturation. Cell 65:417–427

    Article  PubMed  CAS  Google Scholar 

  • Szebenyi G, Rotwein P (1991) Differential regulation of mannose 6-phosphate receptors and their ligands during the myogenic development of C2 cells. J Biol Chem 266:5534–5539

    PubMed  CAS  Google Scholar 

  • Szebenyi G, Rotwein P (1994) The mouse insulin-like growth factor II/cation-independent mannose 6-phosphate (IGF2/MPR) receptor gene: molecular cloning and genomic organization. Genomics 19:120–129

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama Y, Waguri S, Kanamori S et al (2004) Early-phase redistribution of the cation-independent mannose 6-phosphate receptor by U18666A treatment in HeLa cells. Cell Tissue Res 317:253–264

    Article  PubMed  CAS  Google Scholar 

  • Tong PY, Kornfeld S (1989) Ligand interactions of the cation-dependent mannose 6-phosphate receptor. Comparison with the cation-independent mannose 6-phosphate receptor. J Biol Chem 264:7970–7975

    PubMed  CAS  Google Scholar 

  • Tong PY, Gregory W, Kornfeld S (1989) Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding. J Biol Chem 264:7962–7969

    PubMed  CAS  Google Scholar 

  • Tooze J, Hollinshead M, Ludwig T et al (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 111:329–345

    Article  PubMed  CAS  Google Scholar 

  • Tortorella LL, Schapiro FB, Maxfield FR (2007) Role of an acidic cluster/dileucine motif in cation-independent mannose 6-phosphate receptor traffic. Traffic 8:402–413

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Sutton VR, Thia KY et al (2003) A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J Cell Biol 160:223–233

    Article  PubMed  CAS  Google Scholar 

  • Umeda A, Fujita H, Kuronita T et al (2003) Distribution and trafficking of MPR300 is normal in cells with cholesterol accumulated in late endocytic compartments: evidence for early endosome-to-TGN trafficking of MPR300. J Lipid Res 44:1821–1832

    Article  PubMed  CAS  Google Scholar 

  • Uson I, Schmidt B, von Bulow R et al (2003) Locating the anomalous scatterer substructures in halide and sulfur phasing. Acta Crystallogr D Biol Crystallogr 59:57–66

    Article  PubMed  CAS  Google Scholar 

  • Veugelers K, Motyka B, Goping IS et al (2006) Granule-mediated killing by granzyme B and perforin requires a mannose 6-phosphate receptor and is augmented by cell surface heparan sulfate. Mol Biol Cell 17:623–633

    Article  PubMed  CAS  Google Scholar 

  • Villevalois-Cam L, Rescan C, Gilot D et al (2003) The hepatocyte is a direct target for transforming-growth factor β activation via the insulin-like growth factor II/mannose 6-phosphate receptor. J Hepatol 38:156–163

    Article  PubMed  CAS  Google Scholar 

  • Vitelli R, Santillo M, Lattero D et al (1997) Role of the small GTPase Rab7 in the late endocytic pathway. J Biol Chem 272:4391–4397

    Article  PubMed  CAS  Google Scholar 

  • Wang ZQ, Fung MR, Barlow DP, Wagner EF (1994) Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372(6505):464–467

    Article  PubMed  CAS  Google Scholar 

  • Waguri S, Tomiyama Y, Ikeda H, Hida T, Sakai N, Taniike M, Ebisu S, Uchiyama Y (2006) The luminal domain participates in the endosomal trafficking of the cation-independent mannose 6-phosphate receptor. Exp Cell Res 312:4090–4107

    Article  PubMed  CAS  Google Scholar 

  • Wassmer T, Attar N, Bujny MV et al (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54

    Article  PubMed  CAS  Google Scholar 

  • Westcott KR, Rome LH (1988) Cation-independent mannose 6-phosphate receptor contains covalently bound fatty acid. J Cell Biochem 38:23–33

    Article  PubMed  CAS  Google Scholar 

  • Westlund B, Dahms NM, Kornfeld S (1991) The bovine mannose 6-phosphate/insulin-like growth factor II receptor. Localization of mannose 6-phosphate binding sites to domains 1–3 and 7–11 of the extracytoplasmic region. J Biol Chem 266:23233–23239

    PubMed  CAS  Google Scholar 

  • Wood RJ, Hulett MD (2008) Cell surface-expressed cation-independent mannose 6-phosphate receptor (CD222) binds enzymatically active heparanase independently of mannose 6-phosphate to promote extracellular matrix degradation. J Biol Chem 283:4165–4176

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Barlow DP (1998) Imprinting of the mouse Igf2r gene depends on an intronic CpG island. Mol Cell Endocrinol 140:9–14

    Article  PubMed  CAS  Google Scholar 

  • Yammani RR, Sharma M, Seetharam S et al (2002) Loss of albumin and megalin binding to renal cubilin in rats results in albuminuria after total body irradiation. Am J Physiol Regul Integr Comp Physiol 283:R339–R346

    PubMed  CAS  Google Scholar 

  • Yang YW, Robbins AR, Nissley SP et al (1991) The chick embryo fibroblast cation-independent mannose 6-phosphate receptor is functional and immunologically related to the mammalian insulin-like growth factor-II (IGF2)/man 6-P receptor but does not bind IGF2. Endocrinology 128:1177–1189

    Article  PubMed  CAS  Google Scholar 

  • York SJ, Arneson LS, Gregory WT et al (1999) The rate of internalization of the mannose 6-phosphate/insulin-like growth factor II receptor is enhanced by multivalent ligand binding. J Biol Chem 274:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Zaccheo OJ, Prince SN, Miller DM et al (2006) Kinetics of insulin-like growth factor II (IGF2) interaction with domain 11 of the human IGF2/mannose 6-phosphate receptor: function of CD and AB loop solvent-exposed residues. J Mol Biol 359:403–421

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Roizman B (2002) Cation-independent mannose 6-phosphate receptor blocks apoptosis induced by herpes simplex virus 1 mutants lacking glycoprotein D and is likely the target of antiapoptotic activity of the glycoprotein. J Virol 76:6197–6204

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Ma Z, Sly WS (1995) Cloning and expression of the cDNA of chicken cation-independent mannose-6-phosphate receptor. Proc Natl Acad Sci USA 92:9762–9766

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Avitabile E, Campadelli-Fiume G et al (2003) The domains of glycoprotein D required to block apoptosis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to nectin1. J Virol 77:3759–3767

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Doray B, Poussu A et al (2001) Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292(5522):1716–1718

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, G.S. (2012). P-Type Lectins: Cation-Independent Mannose-6-Phosphate Reeptors. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_4

Download citation

Publish with us

Policies and ethics