Skip to main content

Mechanisms of Adhesion in Adult Barnacles

  • Chapter
Biological Adhesive Systems

Abstract

Barnacles belong to the phylum Crustacea (following the taxonomy of Newman, 1987), which makes them segmented animals with jointed limbs, an exoskeleton that periodically moults, and a complex lifecycle involving metamorphosis between larval and adult forms. The group of crustaceans to which barnacles belong, the Cirripedia, has a unique larval form — the cyprid. This life history stage is adapted to locate a spot on which to permanently settle, develop, grow, and survive for the rest of its life. Barnacles have a worldwide distribution and various lifestyles, from parasitic species on the gills of decapod crustaceans to free-living groups. The free-living groups are adapted to permanently attach via cement onto other living organisms, rocks or man-made materials, and barnacle “fouling” on marine installations and cargo ships is increasingly of economic concern (Adamson and Brown, 2002). Within the free-living barnacles, a further division is recognized between acorn (Order Sessilia) and stalked (Order Pedunculata) forms. Certain stalked species are termed “pleustonic” due to a lifestyle at the air/water interface (see Bainbridge and Roskell, 1966) and these are the species which will be emphasized in this chapter (Fig.9.1A-C).

(A) Lepas anatifera showing capitulum (cap) and peduncle (p), scale bar 1 cm; (B) pleustonic species L. Anatifera attached to glass and Dosima fascicularis with glue fl oat; (C) D. Fascicularis with fl oat (f), scale bar 1 cm; (D) transverse section of peduncle in L. Anatifera stained using AZAN (Kiernan, 1999) showing position of the cuticle lining of the peduncle (c), circular and longitudinal muscle layers (mu), ovarioles (o), hemocoelic space (h) and glue gland cells (g), scale bar 500 µm; (E) schematic of glue apparatus in L. Anatifera including the position of the ovarioles/glue glands (o/g) in the peduncle and principal canal (pc); (F) schematic of detailed glue glands in L. Anatifera including mature cement gland (mcg), young cement gland (ycg), lumen (lu) of the principal canal, vacuole (vac), collector canal (cc), secondary canal (sc), intracellular canal (ic), large nucleus with numerous nucleoli (n). Schematic in B is reproduced with permission from Ankel (1962) and drawings in E and F are reprinted with permission of Lacombe and Liguori (1969)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson L and Brown N (2002) Anti-fouling systems. Focus on IMO: 1–32.

    Google Scholar 

  • Anderson DT (1994) Barnacles — Structure, Function, Development and Evolution, 1st Ed. Chapman & Hall, London.

    Google Scholar 

  • Ankel WE (1962) Das Märchen von den Entenmuscheln. Natur und Museum 92: 207–218.

    Google Scholar 

  • Arnbom T and Lundberg S (1995) Notes on Lepas australis (Cirripedia, Lepadidae) recorded on the skin of southern elephant seal (Mirounga leonina). Crustaceana 68: 655–658.

    Google Scholar 

  • Arvy L, Lacombe D, and Shimony T (1968) Studies on the biology of barnacles: alkaline phosphatase activity histochemically detectable in the cement apparatus of the Balanidae (Crustacea-Cirripedia). American Zoologist 8: 817.

    Google Scholar 

  • Aspán A, Huang TS, Cerenius L, and Söderhäll K (1995) cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Proceedings of the National Academy of Sciences of the United States of America 92(4): 939–943.

    Article  Google Scholar 

  • Aumüller G, Wilhelm B, and Seitz J (1999) Apocrine secretion — fact or artifact? Annals of Anatomy 181(5): 437–446.

    Article  Google Scholar 

  • Bainbridge V and Roskell J (1966) A re-description of the larvae of Lepas fascicularis Ellis and Solander with observations on the distribution of Lepas nauplii in the north-eastern Atlantic. In: Barnes H (ed.) Some Contemporary Studies in Marine Science. Allen and Unwin Ltd., London: pp 67–81.

    Google Scholar 

  • Baldridge A (1977) The barnacle Lepas pacifica and the alga Navicula grevillei on Northern elephant seals, Mirounga angustirostris. Journal of Mammalogy 58(3): 428–429.

    Article  CAS  Google Scholar 

  • Barnes DKA, Warren NL, Webb K, Phalan B, and Reid K (2004) Polar pedunculate barnacles piggy-back on pycnogona, penguins, pinniped seals and plastics. Marine Ecology Progress Series 284: 305–310.

    Article  Google Scholar 

  • Barnes H and Blackstock J (1976) Further observations on the biochemical composition of the cement of Lepas fascicularis Ellis & Solander; Electrophoretic examination of the protein moietis under various conditions. Journal of Experimental Marine Biology and Ecology 25: 263–271.

    Article  CAS  Google Scholar 

  • Bernard FJ and Lane CE (1962) Early settlement and metamorphosis of the barnacle Balanus amphritrite niveus. Journal of Morphology 110(1): 19–39.

    Article  Google Scholar 

  • Böck P (1989) Romeis Mikroskopische Technik, 17th Ed. Urban und Schwarzenberg, München.

    Google Scholar 

  • Boëtius J (1952) Some notes on the relation to the substratum of Lepas anatifera L. and Lepas fascicularis E.et S. Oikos 4(II): 112–117.

    Google Scholar 

  • Burnett BR (1972) Aspects of the circulatory system of Pollicipes polymerus J.B. Sowerby (Cirripedia: Thoracica). Journal of Morphology 136: 79–108.

    Article  Google Scholar 

  • Cheng W, Tsai IH, Huang CJ, Chiang PC, Cheng CH, and Yeh MS (2008) Cloning and characterization of hemolymph clottable proteins of kuruma prawn (Marsupenaeus japonicus) and white shrimp (Litopenaeus vannamei). Developmental & Comparative Immunology 32(3): 265–274.

    Article  CAS  Google Scholar 

  • Cheung PJ and Nigrelli RF (1972) Histochemical analysis of the fluid and the solid state of the adhesive materials produced by the pre-and postmetamophosed cyprids of Balanus eburneus Gould. Zoologica: Scientific Contributions of the New York Zoological Society 57: 79–95.

    CAS  Google Scholar 

  • Cheung PJ, Ruggieri GD, and Nigrelli RF (1977) A new method for obtaining barnacle cement in the liquid state for polymerization studies. Marine Biology 43: 157–163.

    Article  Google Scholar 

  • Crenshaw DG (1979) Hydrostatic support of the pedunculate barnacle Pollicipes polymerus. Comparative Biochemistry and Physiology A 62: 423–425.

    Article  Google Scholar 

  • Crisp DJ (1972) Mechanisms of adhesion of fouling organisms. In: Acker RF, Brown BF, DePalma DR, and Iverson WP (eds) Proceedings of the 3rd International Congress on Marine Corrosion and Fouling. Northwestern University Press, Gaithersburg, Maryland: pp 691–709

    Google Scholar 

  • Dickinson GH, Vega IE, Wahl KJ, Orihuela B, Beyley V, Rodriguez EN, Everett RK, Bonaventura J, and Rittschof D (2009) Barnacle cement: a polymerization model based on evolutionary concepts. Journal of Experimental Biology 212(Pt 21): 3499–3510.

    Article  CAS  Google Scholar 

  • Dougherty WJ (1989) Strength of adhesion of adult barnacles, Chthamalus fragilis, reattached to polystyrene. American Zoologist 29: A278.

    Google Scholar 

  • Dougherty WJ (1990) Barnacle adhesion: reattachment of the adult barnacle Chthamalus fragilis Darwin to polystyrene surfaces followed by centrifugational shearing. Journal of Crustacean Biology 10(3): 469–478.

    Article  Google Scholar 

  • Dougherty WJ (1996) Zinc metalloprotease activity in the cement precursor secretion of the barnacle, Chthamalus fragilis Darwin. Tissue and Cell 28(4): 439–447.

    Article  CAS  Google Scholar 

  • Dreanno C, Kirby RR, and Clare AS (2006a) Locating the barnacle settlement pheromone: spatial and ontogenetic expression of the settlement-inducing protein complex of Balanus amphitrite. Proceedings of the Royal Society of London, Series B: Biological Sciences 273(1602): 2721–2728.

    Article  CAS  Google Scholar 

  • Dreanno C, Kirby RR, and Clare AS (2006b) Smell feet are not always a bad thing: the relationship between cyprid footprint protein and the barnacle settlement pheromone. Biology Letters 2: 423–425.

    Article  CAS  Google Scholar 

  • Fyhn UEH and Costlow JD (1976) A histological study of cement secretion during the intermolt cycle in barnacles. Biological Bulletin 150(1): 47–56.

    Article  CAS  Google Scholar 

  • Fyhn UEH and Costlow JD (1977) Histology and histochemistry of the ovary and oogenesis in Balanus amphitrite L. and B. eburneus Gould (Cirripedia, Crustacea). Biological Bulletin 152: 351–359.

    Article  Google Scholar 

  • Kamino K (2006) Barnacles Underwater Attachment. In: Smith AM and Callow JA (eds) Biological Adhesives. Springer-Verlag, Heidelberg: pp 145–166.

    Chapter  Google Scholar 

  • Kamino K (2008) Underwater adhesive of marine organisms as the vital link between biological science and material science. Marine Biotechnology 10: 111–121.

    Article  CAS  Google Scholar 

  • Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, and Shizuri Y (2000) Barnacle cement proteins — importance of disulfide bonds in their insolubility. Journal of Biological Chemistry 275(35): 27360–27365.

    CAS  Google Scholar 

  • Kamino K, Odo S, and Maruyama T (1996) Cement proteins of the acorn barnacle, Megabalanus rosa. Biological Bulletin 190(3): 403–409.

    Article  CAS  Google Scholar 

  • Kiernan JA (1999) Histological and Histochemical Methods: Theory and Practice, 3rd Ed. Butterworth Heinemann, Oxford.

    Google Scholar 

  • Kugele M and Yule AB (2000) Active relocation in lepadomorph barnacles. Journal of the Marine Biological Association of the United Kingdom 80: 103–111.

    Article  Google Scholar 

  • Lacombe D (1966) Glândulas de cimento e seus canais em Balanus tintinnabulum. Nota Técnica No. 32, Publição Instituto de Pesquisas da Marinha, Rio de Janeiro.

    Google Scholar 

  • Lacombe D (1970) A comparative study of the cement glands in some balanid barnacles (Cirripedia, Balanidae). Biological Bulletin 139: 164–179.

    Article  Google Scholar 

  • Lacombe D and Liguori VR (1969) Comparative histological studies of the cement apparatus of Lepas anatifera and Balanus tinntinnabulum. Biological Bulletin 137: 170–180.

    Article  Google Scholar 

  • Lee H, Scherer NF, and Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences of the United States of America 103(35): 12999–13003.

    Article  CAS  Google Scholar 

  • Lim S, Choi YS, Kang DG, Song YH, and Cha HJ (2010) The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. Biomaterials 31: 3715–3722.

    Article  CAS  Google Scholar 

  • Lindner E and Dooley CA (1972) Chemical bonding in cirriped adhesive. In: Acker RF, Brown BF, DePalma DR, and Iverson WP (eds) Proceedings of the 3rd International Congress on Marine Corrosion and Fouling. Northwestern University Press, Gaithersburg, Maryland: pp 653–673.

    Google Scholar 

  • Matsumura K, Nagano M, and Fusetani N (1998a) Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle, Balanus amphitrite. Journal of Experimental Zoology 281: 12–20.

    Article  Google Scholar 

  • Matsumura K, Nagano M, Kato-Yoshinaga Y, Yamazaki M, Clare AS, and Fusetani N (1998b) Immunological studies on the settlement-induced protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva—larva interactions. Proceedings of the Zoological Society of London, Series B 265: 1825–1830.

    Article  CAS  Google Scholar 

  • Minchin D (1996) Tar pellets and plastics as attachment surfaces for lepadid cirripedes in the North Atlantic Ocean. Marine Pollution Bulletin 32: 855–859.

    Article  CAS  Google Scholar 

  • Mori Y, UrushidaY, Nakano M, Uchiyama S, and Kamino K (2007) Calcite-specific coupling protein in barnacle underwater cement. FEBS Journal 274(24): 6436–6446.

    Article  CAS  Google Scholar 

  • Moyse J (1987) Larvae of lepadomorph barnacles. Crustacean Issues 5. Barnacle Biology: 329–362.

    Google Scholar 

  • Nakajima M, Sano H, Burrow MF, Tagami J, Yoshiyama M, Ebisu S, Ciucchi B, Russell CM, and Pashley DH (1995) Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives. Journal of Dental Research 74(10): 1679–1688.

    Article  CAS  Google Scholar 

  • Newman WA (1987) Evolution of cirripedes and their major groups. Barnacle Biology Crustacean Issues 5: 3–42.

    Google Scholar 

  • Nott JA (1969) Settlement of barnacle larvae: surface structure of the antennular attachment disc by scanning electron microscopy. Marine Biology 2: 248–251.

    Article  Google Scholar 

  • Nott JA and Foster BA (1969) On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides (L.). Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 256: 115–134.

    Article  Google Scholar 

  • Ödling K, Albertsson C, Russell JT, and Mårtensson LGE (2008) An in vivo study of exocytosis of cement proteins from barnacle Balanus improvisus (D.) cyprid larva. Journal of Experimental Biology 209: 956–964.

    Article  Google Scholar 

  • Phang IY, Aldred N, Clare AS, Callow JA, and Vancso GJ (2006) An in situ study of the nanomechanical properties of barnacle (Balanus amphitrite) cyprid cement using atomic force microscopy (AFM). Biofouling 22(3–4): 245–250.

    Article  Google Scholar 

  • Saroyan JR, Lindner E, and Dooley CA (1970) Repair and reattachment in the barnacle as related to their cementing mechanism. Biological Bulletin 139: 333–350.

    Article  Google Scholar 

  • Setsaas TH and Bester MN (2006) Goose barnacle (Lepas australis) infestation of the Subantarctic fur seal (Arctocephalus tropicalis). African Zoology 41(2): 305–307.

    Article  Google Scholar 

  • Söderhäll I, Wu C, Novotny M, Lee BK, and Söderhäll K (2009) A novel protein acts as a negative regulator of prophenoloxidase activation and melanization in the freshwater crayfish Pacifastacus leniusculus. Journal of Biological Chemistry 284(10): 6301–6310.

    Article  Google Scholar 

  • Stewart RJ, Weaver JC, Morse DE, and Waite JH (2004) The tube cement of Phragmatopoma californica: a solid foam. Journal of Experimental Biology 207(Pt 26): 4727–4734.

    Article  CAS  Google Scholar 

  • Sullan RM, Gunari N, Tanur AE, Chan Y, Dickinson GH, Orihuela B, Rittschof D, and Walker GC (2009) Nanoscale structures and mechanics of barnacle cement. Biofouling 25(3): 263–275.

    Article  CAS  Google Scholar 

  • Sun Y, Guo S, Walker GC, Kavanagh CJ, and Swain GW (2004) Surface elastic modulus of barnacle adhesive and release characteristics from silicone surfaces. Biofouling 20(6): 279–289.

    Article  CAS  Google Scholar 

  • Theopold U, Schmidt O, Söderhäll K, and Dushay MS (2004) Coagulation in arthropods: defence, wound closure and healing. Trends in Immunology 25(6): 289–294.

    Article  CAS  Google Scholar 

  • Trump BF, Smuckler EA, and Benditt EP (1961) A method for staining epoxy sections for light microscopy. Journal of Ultrastructure Research 5: 343–348.

    Article  CAS  Google Scholar 

  • Urushida Y, Nakano M, Matsuda S, Inoue N, Kanai S, Kitamura N, Nishino T, and Kamino K (2007) Identification and functional characterization of a novel barnacle cement protein. FEBS Journal 274(16): 4336–4346.

    Article  CAS  Google Scholar 

  • Waite JH (2002) Adhesion á la Moule. Integrative and Comparative Biology 42: 1172–1180.

    Article  CAS  Google Scholar 

  • Waite JH, Anderson NH, Jewhurst S, and Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. Journal of Adhesion 81:297–317.

    Article  CAS  Google Scholar 

  • Walker G (1970) The histology, histochemistry and ultrastructure of the cement apparatus of three adult sessile barnacles, Elminius modestus, Balanus balanoides and Balanus hameri. Marine Biology 7: 239–248.

    Article  Google Scholar 

  • Walker G (1971) A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Marine Biology 9: 205–212.

    Article  Google Scholar 

  • Walker G (1973) The early development of the cement apparatus in the barnacle, Balanus balanoides (L.) (Crustacea: Cirripedia). Journal of Experimental Marine Biology and Ecology 12: 305–314.

    Article  Google Scholar 

  • Walker G and Youngson A (1975) The biochemical composition of Lepas anatifera (L.) cement (Crustacea: Cirripedia). Journal of the Marine Biological Association of the United Kingdom 55: 703–707.

    Article  CAS  Google Scholar 

  • Walker G and Yule AB (1984) Temporary adhesion of the barnacle cyprid: the existence of an antennular adhesive secretion. Journal of the Marine Biological Association of the United Kingdom 64: 679–686.

    Article  Google Scholar 

  • Walley LJ (1969) Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 256: 237–280.

    Article  Google Scholar 

  • Wang R, Liang Z, Hall M, and Söderhäll K (2001) A transglutaminase involved in the coagulation system of the freshwater crayfish, Pacifastacus leniusculus. Tissue localisation and cDNA cloning. Fish & Shellfish Immunology 11(7): 623–637.

    Article  CAS  Google Scholar 

  • Yule AB and Walker G (1984) The adhesion of the barnacle, Balanus balanoides, to slate surfaces. Journal of the Marine Biological Association of the United Kingdom 64: 147–156.

    Article  Google Scholar 

  • Yule AB and Walker G (1987) Adhesion in barnacles. Barnacle Biology Crustacean Issues 5: 389–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Power, A.M., Klepal, W., Zheden, V., Jonker, J., McEvilly, P., von Byern, J. (2010). Mechanisms of Adhesion in Adult Barnacles. In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_9

Download citation

Publish with us

Policies and ethics