Skip to main content

Byssus Formation in Mytilus

  • Chapter

Abstract

The ability of the Mytilus genus of mussels (Phylum Mollusca, Class Bivalvia, and Family Mytilidae) to adhere in marine environments has fascinated researchers from numerous disciplines of science for decades. These relatively small, sessile bivalves attach to a wide range of surfaces present in their natural intertidal and subtidal ocean habitats (rocks, wood, seaweed, other animals, and ship hulls, for example) as well as to surfaces commonly tested in research laboratory settings (glass, plastics [including Teflon®], metals, and biological materials such as teeth, bones, cells, and tissues). No single man-made product on the market to date can claim to possess such a vast application range. An understanding of the unique biological adhesive system in Mytilus species (sp.) will undoubtedly aid in the development of biomimetic glues and related products for use in virtually every industry requiring bonding of two materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babarro JMF, Fernandez MJ, and Labarta U (2008) Secretion of byssal threads and attachment strength of Mytilus galloprovincialis: the influence of size and food availability. Journal of the Marine Biological Association of the United Kingdom 88(4): 783–791.

    Article  Google Scholar 

  • Bell EC and Gosline JM (1996) Mechanical design of mussel byssus: material yield enhances attachment strength. Journal of Experimental Biology 199(Pt4): 1005–1017.

    Google Scholar 

  • Bell EC and Gosline JM (1997) Strategies for life in flow: tenacity, morphometry, and probability of dislodgement of two Mytilus species. Marine Ecology Process Series 159: 197–208.

    Article  Google Scholar 

  • Benedict CV and Waite JH (1986) Composition and ultrastructure of the byssus of Mytilus edulis. Journal of Morphology 189(3): 261–270.

    Article  CAS  Google Scholar 

  • Brown CH (1952) Some structural proteins of Mytilus edulis. Quarterly Journal of Microscopical Science 93: 487–502.

    Google Scholar 

  • Burzio LA (1996) Catechol oxidases associated with byssus formation in the blue mussel, Mytilus edulis. MS Thesis, University of Delaware, Newark, USA.

    Google Scholar 

  • Carrington E (2002) Seasonal variation in the attachment strength of blue mussels: causes and consequences. Limnology and Oceanography 47(6): 1723–1733.

    Article  Google Scholar 

  • Coyne KJ, Qin X, and Waite JH (1997) Extensible collagen in mussel byssus: a natural block copolymer. Science 277(5333): 1830–1832.

    Article  CAS  Google Scholar 

  • Coyne KJ and Waite JH (2000) In search of molecular dovetails in mussel byssus: from the threads to the stem. Journal of Experimental Biology 203(Pt 9): 1425–1431.

    CAS  Google Scholar 

  • Crisp DJ, Walker G, Young GA, and Yule AB (1985) Adhesion and substrate choice in mussels and barnacles. Journal of Colloid and Interface Science 104(1): 40–50.

    Article  Google Scholar 

  • Engel RH, Hillman RE, Neat MJ, and Quinby HL (1971) A study of the adhesive mechanisms of various species of the sea mussel. Report number NIH NIDR 70–2237, pp 1–35.

    Google Scholar 

  • Fant C, Scott K, Elwing H, and Hook F (2000) Adsorption behavior and enzymatically or chemically induced cross-linking of a mussel adhesive protein. Biofouling 16(2–4): 119–132.

    Article  CAS  Google Scholar 

  • Filupa DR, Lee SM, Link RP, Strausberg SL, and Strausberg RL (1990) Structural and functional repetition in a marine mussel adhesive protein. Biotechnology Progress 6(3): 171–177.

    Article  Google Scholar 

  • Flammang P, Lambert A, Bailly P, and Hennebert E (2009) Polyphosphoprotein-containing marine adhesives. The Journal of Adhesion 85: 447–464.

    Article  CAS  Google Scholar 

  • Floriolli RY, von Langen J, and Waite JH (2000) Marine surfaces and the expression of specific byssal adhesive protein variants in Mytilus. Marine Biotechnology 2(4): 352–363.

    CAS  Google Scholar 

  • Haemers S, van der Leeden MC, and Frens G (2005) Coil dimensions of the mussel adhesive protein Mefp-1. Biomaterials 26(11): 1231–1236.

    Article  CAS  Google Scholar 

  • Hagenau A and Seibel T (2010) Towards the recombinant production of mussel byssal collagens. Journal of Adhesion 86(1): 10–24.

    Article  CAS  Google Scholar 

  • Harrington MJ and Waite JH (2008) pH-Dependent locking of giant mesogens in fibers drawn from mussel byssal collagens. Biomacromolecules 9(5): 1480–1486.

    Article  CAS  Google Scholar 

  • Harrington MJ, Masic A, Holten-Andersen N, Waite JH, and Fratzl P (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975): 216–220.

    Article  CAS  Google Scholar 

  • Hellio C, Bourgougnon N, and Gal YL (2000) Phenoloxidase (E.C. 1.14.18.1) from the byssus gland of Mytilus edulis: purification, partial characterization, and application for screening products with potential antifouling activities. Biofouling 16(2–4): 235–244.

    Article  CAS  Google Scholar 

  • Holten-Andersen N and Waite JH (2008) Mussel-designed protective coatings for compliant substrates. Journal of Dental Research 87(8): 701.

    Article  CAS  Google Scholar 

  • Inoue K, Takeuchi Y, Miki D, and Odo S (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. Journal of Biological Chemistry 270(12): 6698–6701.

    Article  CAS  Google Scholar 

  • Inoue K, Takeuchi Y, Miki D, Odo S, Harayama S, and Waite JH (1996) Cloning, sequencing and sites of expression of genes for the hydroxyarginine-containing adhesive-plaque protein of the mussel Mytilus galloprovincialis. European Journal of Biochemistry 239(1): 172–176.

    Article  CAS  Google Scholar 

  • Laursen RA (1992) Reflections on the structure of mussel adhesive proteins. Results and Problems in Cell Differentiation 19: 55–74.

    Article  CAS  Google Scholar 

  • Lee H, Dellatore SM, Miller WM, and Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318: 426–430.

    Article  CAS  Google Scholar 

  • Moeser GM, Leba H, and Carrington E (2006) Seasonal influence of wave action on thread production in Mytilus edulis. Journal of Experimental Biology 209: 881–890.

    Article  Google Scholar 

  • Papov VV, Diamond TV, Biemann K, and Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. Journal of Biological Chemistry 270(34): 20183–20192.

    Article  CAS  Google Scholar 

  • Pujol JP (1967) Formation of the byssus in the common mussel (Mytilus edulis L.) Nature 214: 204–205.

    Article  Google Scholar 

  • Pujol JP, Houvenaghel G, and Bouillon J (1972) Le collagene du byssus de Mytilus edulis L. I. Ultrastructure des cellules secretrices. Archives de Zoologie Experimentale & Generale 113: 251–264.

    Google Scholar 

  • Qin X and Waite JH (1995) Exotic collagen gradients in the byssus of the mussel Mytilus edulis. Journal of Experimental Biology 198(Pt 3): 633–644.

    CAS  Google Scholar 

  • Qin X and Waite JH (1998) A potential mediator of collagenous block copolymer gradients in mussel byssal threads. Proceedings of the National Academy of Sciences 95: 10517–10522.

    Article  CAS  Google Scholar 

  • Ravindranath MH and Ramalingam K (1972) Histochemical identification of Dopa, Dopamine and Catechol in phenol gland and mode of tanning of byssus threads of Mytilus edulis. Acta Histochemica 42(1): 87–94.

    CAS  Google Scholar 

  • Rzepecki LM, Hansen KM, and Waite JH (1992) Characterization of a cystine-rich polyphenolic protein family from the blue mussel, Mytilus edulis L. Biological Bulletin 183(1): 123–137.

    Article  CAS  Google Scholar 

  • Sagert J and Waite JH (2009) Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis. Journal of Experimental Biology 212(Pt 14): 2224–2236.

    Article  CAS  Google Scholar 

  • Selin NI and Vekhova EE (2004) Effects of environmental factors on byssal thread formation in some members of the family Mytilidae from the Sea of Japan. Russian Journal of Marine Biology 30(5): 306–313.

    Article  Google Scholar 

  • Stewart RJ, Weaver JC, Morse DE, and Waite JH (2004) The tube cement of Phragmatopoma californica: a solid foam. Journal of Experimental Biology 207(Pt 26): 4727–4734.

    Article  CAS  Google Scholar 

  • Sun C, Lucas JM, and Waite JH (2002) Collagen-binding matrix proteins from elastomeric extraorganismic byssal fibers. Biomacromolecules 3: 1240–1248.

    Article  CAS  Google Scholar 

  • Tamarin A and Keller PJ (1972) An ultrastructural study of the byssal thread forming system in Mytilus. Journal of Ultrastructure Research 40(3): 401–416.

    Article  CAS  Google Scholar 

  • Tamarin A, Lewis P, and Askey J (1976) The structure and formation of the byssus attachment plaque in Mytilus. Journal of Morphology 149(2): 199–221.

    Article  CAS  Google Scholar 

  • van Winkle W (1970) Effect of environmental factors on byssal thread formation. Marine Biology 7(2): 143–148.

    Article  Google Scholar 

  • Vitellaro-Zuccarello L, DeBiasi S, and Bairati A (1983a) The ultrastructure of the byssal apparatus of a mussel. V: Localization of collagenic and elastic components in the threads. Tissue and Cell 15(4): 547–554.

    Article  CAS  Google Scholar 

  • Vitellaro-Zuccarello L, DeBiasi S, and Blum I (1983b) Histochemical and ultrastructural study on the innervation of the byssus glands of Mytilus galloprovincialis. Cell Tissue Research 233(2): 403–413.

    CAS  Google Scholar 

  • Vreeland V, Waite JH, and Epstein L (1998) Polyphenols and oxidase in substratum adhesion by marine algae and mussel. Journal of Phycology 34: 1–8.

    Article  CAS  Google Scholar 

  • Waite JH (1983) Evidence for a repeating 3,4-dihydroxyphenylalanine-and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. Journal of Biological Chemistry 258(5): 2911–2915.

    CAS  Google Scholar 

  • Waite JH (1985) Catechol oxidase in the byssus of the common mussel, Mytilus edulis L. Journal of the Marine Biological Association of the United Kingdom 65: 359–371.

    Article  CAS  Google Scholar 

  • Waite JH and Tanzer ML (1981) Polyphenolic substance of Mytilus edulis — novel adhesive containing L-DOPA and hydroxyproline. Science 212(4498): 1038–1040.

    Article  CAS  Google Scholar 

  • Waite JH and Qin X (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40(9): 2887–2893.

    Article  CAS  Google Scholar 

  • Waite JH, Qin X, and Coyne KJ (1998) The peculiar collagens of mussel byssus. Matrix Biology 17(2): 93–106.

    Article  CAS  Google Scholar 

  • Waite JH, Lichtenegger HC, Stucky GD, and Hansma P (2004) Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43(24): 7653–7662.

    Article  CAS  Google Scholar 

  • Waite JH, Anderson NH, Jewhurst SA, and Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. Journal of Adhesion 81(3–4): 297–317.

    Article  CAS  Google Scholar 

  • Warner SC and Waite JH (1999) Expression of multiple forms of an adhesive plaque protein in an individual mussel, Mytilus edulis. Marine Biology 134(4): 729–734.

    Article  CAS  Google Scholar 

  • Weaver JK (1998) Isolation, purification, and partial characterization of a mussel byssal precursor protein, Mytilus edulis foot protein 4. MS Thesis, University of Delaware, Newark, USA.

    Google Scholar 

  • Wiegemann M (2005) Adhesion in blue mussel (Mytilus edulis) and barnacles (genus Balanus): mechanisms and technical applications. Aquatic Science 67: 166–176.

    Article  CAS  Google Scholar 

  • Zhao H and Waite JH (2006a) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. Journal of Biological Chemistry 281(36): 26150–26158.

    Article  CAS  Google Scholar 

  • Zhao H and Waite JH (2006b) Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry 45(47): 14223–14231.

    Article  CAS  Google Scholar 

  • Zuccarello LV (1981) Ultrastructural and cytochemical study on the enzyme gland of the foot of a mollusk. Tissue and Cell 13(4): 701–713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Silverman, H.G., Roberto, F.F. (2010). Byssus Formation in Mytilus . In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_18

Download citation

Publish with us

Policies and ethics