Skip to main content

The mechanism by which tmRNA rescues stalled ribosomes

  • Chapter
Ribosomes

Abstract

Not all translation reactions end in the synthesis of a full-length protein. In bacteria, ribosomes stall at the 3′ end of mRNA transcripts lacking stop codons, as they cannot efficiently employ release factors for termination and recycling. Some non-stop mRNAs arise from defects in transcription. RNA polymerase occasionally terminates transcription prematurely; this can occur either as a result of pausing at specific sequences or encountering a tightly-bound protein on the DNA (Abo et al., 2000). Another likely source is the regular process of mRNA degradation. mRNAs are turned over quickly in bacteria, with an average half-life of about six or seven minutes (Bernstein et al., 2002; Selinger et al., 2003). Bacterial mRNAs are degraded by endonucleases and by processive 3′ to 5′ exonucleases (Condon, 2007). An exonuclease that collides with a translating ribosome leaves it stalled on the truncated transcript. Ribosome stalling constitutes a serious threat to the integrity of bacterial cells: roughly 1 in 250 of all translation reactions result in an irreversible arrest (Moore and Sauer, 2005). If these arrested ribosomes were not released, the majority of ribosomes would become inoperative within a single generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo T, Inada T, Ogawa K, Aiba, H (2000) SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J 19: 3762–3769

    Article  PubMed  CAS  Google Scholar 

  • Barends S, Karzai AW, Sauer RT, Wower J, Kraal, B (2001) Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA. J Mol Biol 314: 9–21

    Article  PubMed  CAS  Google Scholar 

  • Barends S, Wower J, Kraal, B (2000) Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Biochemistry-Us 39: 2652–2658

    Article  CAS  Google Scholar 

  • Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99: 9697–9702

    Article  PubMed  CAS  Google Scholar 

  • Bessho Y, Shibata R, Sekine S, Murayama K, Higashijima K, Hori-Takemoto C, Shirouzu M, Kuramitsu S, Yokoyama S (2007) Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Proc Natl Acad Sci USA 104: 8293–8298

    Article  PubMed  CAS  Google Scholar 

  • Bjornsson A, Isaksson LA (1996) Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res 24: 1753–1757

    Article  PubMed  CAS  Google Scholar 

  • Bugaeva EY, Shpanchenko OV, Felden B, Isaksson LA, Dontsova OA (2008) One SmpB molecule accompanies tmRNA during its passage through the ribosomes. FEBS Lett 582: 1532–1536

    Article  PubMed  CAS  Google Scholar 

  • Chauhan AK, Apirion, D (1989) The gene for a small stable RNA (10Sa RNA) of Escherichia coli. Mol Microbiol 3: 1481–1485

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Ivanova N, Scheres SH, Pavlov MY, Carazo JM, Hebert H, Ehrenberg M, Lindahl, M (2010) tmRNA. SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. J Struct Biol 169: 342–348

    Article  PubMed  CAS  Google Scholar 

  • Choy JS, Aung LL, Karzai AW (2007) Lon protease degrades transfer-messenger RNA-tagged proteins. J Bacteriol 189: 6564–6571

    Article  PubMed  CAS  Google Scholar 

  • Collier J, Bohn C, Bouloc, P (2004) SsrA tagging of Escherichia coli SecM at its translation arrest sequence. J Biol Chem 279: 54193–54 201

    Article  PubMed  CAS  Google Scholar 

  • Condon, C (2007) Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 10: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Dong G, Nowakowski J, Hoffman DW (2002) Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. EMBO J 21: 1845–1854

    Article  PubMed  CAS  Google Scholar 

  • Dulebohn D, Choy J, Sundermeier T, Okan N, Karzai AW (2007) Trans-translation: The tmRNA-mediated surveillance mechanism for ribosome rescue, directed protein degradation, and nonstop mRNA decay. Biochemistry-Us 46: 4681–4693

    Article  CAS  Google Scholar 

  • Farrell CM, Grossman AD, Sauer RT (2005) Cytoplasmic degradation of ssrA-tagged proteins. Mol Microbiol 57: 1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Felden B, Hanawa K, Atkins JF, Himeno H, Muto A, Gesteland RF, McCloskey JA, Crain PF (1998) Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J 17: 3188–3196

    Article  PubMed  CAS  Google Scholar 

  • Felden B, Himeno H, Muto A, McCutcheon JP, Atkins JF, Gesteland RF (1997) Probing the structure of the Escherichia coli 10Sa RNA (tmRNA) RNA 3: 89–103

    PubMed  CAS  Google Scholar 

  • Flynn JM, Levchenko I, Seidel M, Wickner SH, Sauer RT, Baker TA (2001) Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci USA 98: 10 584–10 589

    Article  CAS  Google Scholar 

  • Garza-Sanchez F, Gin JG, Hayes CS (2008) Amino acid starvation and colicin D treatment induce A-site mRNA cleavage in Escherichia coli. J Mol Biol 378: 505–519

    Article  PubMed  CAS  Google Scholar 

  • Garza-Sanchez F, Janssen BD, Hayes CS (2006) Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. J Biol Chem 281: 34 258–34 268

    Article  CAS  Google Scholar 

  • Garza-Sanchez F, Shoji S, Fredrick K, Hayes CS (2009) RNase II is important for A-site mRNA cleavage during ribosome pausing. Mol Microbiol 73: 882–897

    Article  PubMed  CAS  Google Scholar 

  • Gillet R, Kaur S, Li W, Hallier M, Felden B, Frank, J (2007) Scaffolding as an organizing principle in trans-translation. The roles of small protein B and ribosomal protein S1. J Biol Chem 282: 6356–6363

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Roche E, Zhou Y, Sauer RT (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12: 1338–1347

    Article  PubMed  CAS  Google Scholar 

  • Gutmann S, Haebel PW, Metzinger L, Sutter M, Felden B, Ban, N (2003) Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature 424: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Hallier M, Desreac J, Felden, B (2006) Small protein B interacts with the large and the small subunits of a stalled ribosome during trans-translation. Nucleic Acids Res 34: 1935–1943

    Article  PubMed  CAS  Google Scholar 

  • Hallier M, Ivanova N, Rametti A, Pavlov M, Ehrenberg M, Felden, B (2004) Pre-binding of small protein B to a stalled ribosome triggers trans-translation. J Biol Chem 279: 25 978–25 985

    Article  CAS  Google Scholar 

  • Hanawa-Suetsugu K, Bordeau V, Himeno H, Muto A, Felden, B (2001) Importance of the conserved nucleotides around the tRNA-like structure of Escherichia coli transfer-messenger RNA for protein tagging. Nucleic Acids Res 29: 4663–4673

    Article  PubMed  CAS  Google Scholar 

  • Hanawa-Suetsugu K, Takagi M, Inokuchi H, Himeno H, Muto, A (2002) SmpB functions in various steps of trans-translation. Nucleic Acids Res 30: 1620–1629

    Article  PubMed  CAS  Google Scholar 

  • Hartmann RK, Gossringer M, Spath B, Fischer S, Marchfelder, A (2009) The making of tRNAs and more — RNase P and tRNase Z. Prog Mol Biol Transl Sci 85: 319–368

    Article  PubMed  CAS  Google Scholar 

  • Hayes CS, Bose B, Sauer RT (2002a) Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J Biol Chem 277: 33 825–33 832

    CAS  Google Scholar 

  • Hayes CS, Bose B, Sauer RT (2002b) Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci USA 99: 3440–3445

    Article  PubMed  CAS  Google Scholar 

  • Hayes CS, Sauer RT (2003) Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol Cell 12: 903–911

    Article  PubMed  CAS  Google Scholar 

  • Herman C, Thevenet D, Bouloc P, Walker GC, D’Ari, R (1998) Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH) Genes Dev 12: 1348–1355

    Article  PubMed  CAS  Google Scholar 

  • Hong SJ, Tran QA, Keiler KC (2005) Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol Microbiol 57: 565–575

    Article  PubMed  CAS  Google Scholar 

  • Hou YM, Schimmel, P (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333: 140–145

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Wolfgang MC, Withey J, Koomey M, Friedman DI (2000) Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J 19: 1098–1107

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165–2169

    Article  PubMed  CAS  Google Scholar 

  • Ivanov PV, Zvereva MI, Shpanchenko OV, Dontsova OA, Bogdanov AA, Aglyamova GV, Lim VI, Teraoka Y, Nierhaus KH (2002) How does tmRNA move through the ribosome? FEBS Lett 514: 55–59

    Article  PubMed  CAS  Google Scholar 

  • Ivanova N, Lindell M, Pavlov M, Holmberg Schiavone L, Wagner EG, Ehrenberg, M (2007) Structure probing of tmRNA in distinct stages of trans-translation. RNA 13: 713–722

    Article  PubMed  CAS  Google Scholar 

  • Ivanova N, Pavlov MY, Ehrenberg, M (2005) tmRNA-induced release of messenger RNA from stalled ribosomes. J Mol Biol 350: 897–905

    Article  PubMed  CAS  Google Scholar 

  • Ivanova N, Pavlov MY, Felden B, Ehrenberg, M (2004) Ribosome rescue by tmRNA requires truncated mRNAs. J Mol Biol 338: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Jacob Y, Sharkady SM, Bhardwaj K, Sanda A, Williams KP (2005) Function of the SmpB tail in transfer-messenger RNA translation revealed by a nucleus-encoded form. J Biol Chem 280: 5503–5509

    Article  PubMed  CAS  Google Scholar 

  • Janssen BD, Hayes CS (2009) Kinetics of paused ribosome recycling in Escherichia coli. J Mol Biol 394: 251–267

    Article  PubMed  CAS  Google Scholar 

  • Karzai AW, Sauer RT (2001) Protein factors associated with the SsrA. SmpB tagging and ribosome rescue complex. Proc Natl Acad Sci USA 98: 3040–3044

    Article  PubMed  CAS  Google Scholar 

  • Karzai AW, Susskind MM, Sauer RT (1999) SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA) EMBO J 18: 3793–3799

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Gillet R, Li W, Gursky R, Frank, J (2006) Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc Natl Acad Sci USA 103: 16 484–16 489

    CAS  Google Scholar 

  • Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62: 133–151

    Article  PubMed  CAS  Google Scholar 

  • Keiler KC, Waller PR, Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271: 990–993

    Article  PubMed  CAS  Google Scholar 

  • Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi, H (1994) A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci USA 91: 9223–9227

    Article  PubMed  CAS  Google Scholar 

  • Konno T, Kurita D, Takada K, Muto A, Himeno, H (2007) A functional interaction of SmpB with tmRNA for determination of the resuming point of trans-translation. RNA 13: 1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Kurita D, Muto A, Himeno, H (2010) Role of the C-terminal tail of SmpB in the early stage of trans-translation. RNA 16: 980–990

    Article  PubMed  CAS  Google Scholar 

  • Kurita D, Sasaki R, Muto A, Himeno, H (2007) Interaction of SmpB with ribosome from directed hydroxyl radical probing. Nucleic Acids Res 35: 7248–7255

    Article  PubMed  CAS  Google Scholar 

  • Kuroha K, Horiguchi N, Aiba H, Inada, T (2009) Analysis of nonstop mRNA translation in the absence of tmRNA in Es-cherichia coli. Genes Cells 14: 739–749

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Ishii M, Tadaki T, Muto A, Himeno, H (2001) Determinants on tmRNA for initiating efficient and precise trans-translation: some mutations upstream of the tag-encoding sequence of Escherichia coli tmRNA shift the initiation point of trans-translation in vitro. RNA 7: 999–1012

    Article  PubMed  CAS  Google Scholar 

  • Levchenko I, Seidel M, Sauer RT, Baker TA (2000) A specificity-enhancing factor for the ClpXP degradation machine. Science 289: 2354–2356

    Article  PubMed  CAS  Google Scholar 

  • Li X, Hirano R, Tagami H, Aiba, H (2006) Protein tagging at rare codons is caused by tmRNA action at the 3′ end of nonstop mRNA generated in response to ribosome stalling. RNA 12: 248–255

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Deutscher MP (2002) RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Pandit S, Deutscher MP (1998) 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs inEscherichia coli. Proc Natl Acad Sci USA 95: 2856–2861

    Article  PubMed  CAS  Google Scholar 

  • Lies M, Maurizi MR (2008) Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli. J Biol Chem 283: 22 918–22 929

    Article  CAS  Google Scholar 

  • Lin-Chao S, Wei CL, Lin YT (1999) RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc Natl Acad Sci USA 96: 12406–12411

    Article  PubMed  CAS  Google Scholar 

  • Loomis WP, Koo JT, Cheung TP, Moseley SL (2001) A tripeptide sequence within the nascent DaaP protein is required for mRNA processing of a fimbrial operon in Escherichia coli. Mol Microbiol 39: 693–707

    Article  PubMed  CAS  Google Scholar 

  • Makarov EM, Apirion, D (1992) 10Sa RNA: processing by and inhibition of RNase III. Biochem Int 26: 1115–1124

    PubMed  CAS  Google Scholar 

  • McClain WH, Foss, K (1988) Changing the identity of a tRNA by introducing a G-U wobble pair near the 3′ acceptor end. Science 240: 793–796

    Article  PubMed  CAS  Google Scholar 

  • McClain WH, Guerrier-Takada C, Altman S (1987) Model substrates for an RNA enzyme. Science 238: 527–530

    Article  PubMed  CAS  Google Scholar 

  • McGinness KE, Sauer RT (2004) Ribosomal protein S1 binds mRNA and tmRNA similarly but plays distinct roles in translation of these molecules. Proc Natl Acad Sci USA 101: 13 454–13 459

    Article  CAS  Google Scholar 

  • Mehta P, Richards J, Karzai AW (2006) tmRNA determinants required for facilitating nonstop mRNA decay. RNA 12: 2187–2198

    Article  PubMed  CAS  Google Scholar 

  • Metzinger L, Hallier M, Felden, B (2005) Independent binding sites of small protein B onto transfer-messenger RNA during trans-translation. Nucleic Acids Res 33: 2384–2394

    Article  PubMed  CAS  Google Scholar 

  • Metzinger L, Hallier M, Felden, B (2008) The highest affinity binding site of small protein B on transfer messenger RNA is outside the tRNA domain. RNA 14: 1761–1772

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Healey DW, Robison SG, Dewey JD, Buskirk AR (2008) The role of upstream sequences in selecting the reading frame on tmRNA. BMC Biology 6: 29

    Article  PubMed  CAS  Google Scholar 

  • Moore SD, Sauer RT (2005) Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol Microbiol 58: 456–466

    Article  PubMed  CAS  Google Scholar 

  • Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76: 101–124

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12: 861–867

    PubMed  CAS  Google Scholar 

  • Muto A, Fujihara A, Ito KI, Matsuno J, Ushida C, Himeno, H (2000) Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells 5: 627–635

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ito, K (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108: 629–636

    Article  PubMed  CAS  Google Scholar 

  • Nameki N, Chattopadhyay P, Himeno H, Muto A, Kawai, G (1999a) An NMR and mutational analysis of an RNA pseudoknot of Escherichia coli tmRNA involved in trans-translation. Nucleic Acids Res 27: 3667–3675

    Article  PubMed  CAS  Google Scholar 

  • Nameki N, Felden B, Atkins JF, Gesteland RF, Himeno H, Muto, A (1999b) Functional and structural analysis of a pseudoknot upstream of the tag-encoded sequence in E. coli tmRNA. J Mol Biol 286: 733–744

    Article  PubMed  CAS  Google Scholar 

  • Nameki N, Someya T, Okano S, Suemasa R, Kimoto M, Hanawa-Suetsugu K, Terada T, Shirouzu M, Hirao I, Takaku H, et al. (2005) Interaction analysis between tmRNA and SmpB from Thermus thermophilus. J Biochem 138: 729–739

    Article  PubMed  CAS  Google Scholar 

  • Nameki N, Tadaki T, Himeno H, Muto, A (2000) Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs. FEBS Lett 470: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Nameki N, Tadaki T, Muto A, Himeno, H (1999c) Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. J Mol Biol 289: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Neubauer C, Gao YG, Andersen KR, Dunham CM, Kelley AC, Hentschel J, Gerdes K, Ramakrishnan V, Brodersen DE (2009) The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139: 1084–1095

    Article  PubMed  CAS  Google Scholar 

  • Nonin-Lecomte S, Germain-Amiot N, Gillet R, Hallier M, Ponchon L, Dardel F, Felden, B (2009) Ribosome hijacking: a role for small protein B during trans-translation. EMBO Reports 10: 160–165

    Article  PubMed  CAS  Google Scholar 

  • O’ Connor, M (2007) Minimal translation of the tmRNA tag-coding region is required for ribosome release. Biochem Biophys Res Commun 357: 276–281

    Article  CAS  Google Scholar 

  • Ogle JM, Brodersen DE, Clemons WM, Jr., Tarry MJ, Carter AP, Ramakrishnan, V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292: 897–902

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan, V (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111: 721–732

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Ramakrishnan, V (2005) Structural insights into translational fidelity. Annu Rev Biochem 74: 129–177

    Article  PubMed  CAS  Google Scholar 

  • Oh BK, Apirion, D (1991) 10Sa RNA, a small stable RNA of Escherichia coli, is functional. Mol Gen Genet 229: 52–56

    Article  PubMed  CAS  Google Scholar 

  • Oh BK, Chauhan AK, Isono K, Apirion, D (1990) Location of a gene (ssrA) for a small, stable RNA (10Sa RNA) in the Escherichia coli chromosome. J Bacteriol 172: 4708–4709

    PubMed  CAS  Google Scholar 

  • Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg, M (2003) The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112: 131–140

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Shimizu Y, Ueda, T (2007) Ribosomal protein S1 is not essential for the trans-translation machinery. J Mol Biol 368: 845–852

    Article  PubMed  CAS  Google Scholar 

  • Richards J, Mehta P, Karzai AW (2006) RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol Microbiol 62: 1700–1712

    Article  PubMed  CAS  Google Scholar 

  • Roche ED, Sauer RT (1999) SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J 18: 4579–4589

    Article  PubMed  CAS  Google Scholar 

  • Roche ED, Sauer RT (2001) Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J Biol Chem 276: 28 509–28 515

    Article  CAS  Google Scholar 

  • Rudinger-Thirion J, Giege R, Felden, B (1999) Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA 5: 989–992

    Article  PubMed  CAS  Google Scholar 

  • Saguy M, Gillet R, Skorski P, Hermann-Le Denmat S, Felden, B (2007) Ribosomal protein S1 influences trans-translation in vitro and in vivo. Nucleic Acids Res 35: 2368–2376

    Article  PubMed  CAS  Google Scholar 

  • Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, et al. (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102: 615–623

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV4th, Weir JR, Ramakrishnan, V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    Article  PubMed  CAS  Google Scholar 

  • Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow, C (2003) Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res 13: 216–223

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Ueda, T (2002) The role of SmpB protein in trans-translation. FEBS Lett 514: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Ueda, T (2006) SmpB triggers GTP hydrolysis of elongation factor Tu on ribosomes by compensating for the lack of codon-anticodon interaction during trans-translation initiation. J Biol Chem 281: 15 987–15 996

    CAS  Google Scholar 

  • Shpanchenko OV, Zvereva MI, Ivanov PV, Bugaeva EY, Rozov AS, Bogdanov AA, Kalkum M, Isaksson LA, Nierhaus KH, Dontsova OA (2005) Stepping transfer messenger RNA through the ribosome. J Biol Chem 280: 18 368–18 374

    CAS  Google Scholar 

  • Singh NS, Ahmad R, Sangeetha R, Varshney, U (2008) Recycling of ribosomal complexes stalled at the step of elongation in Escherichia coli. J Mol Biol 380: 451–464

    Article  PubMed  CAS  Google Scholar 

  • Singh NS, Varshney, U (2004) A physiological connection between tmRNA and peptidyl-tRNA hydrolase functions in Escherichia coli. Nucleic Acids Res 32: 6028–6037

    Article  PubMed  CAS  Google Scholar 

  • Someya T, Nameki N, Hosoi H, Suzuki S, Hatanaka H, Fujii M, Terada T, Shirouzu M, Inoue Y, Shibata T, et al. (2003) Solution structure of a tmRNA-binding protein, SmpB, from Thermus thermophilus. FEBS Lett 535: 94–100

    Article  PubMed  CAS  Google Scholar 

  • Srivastava RK, Miczak A, Apirion, D (1990) Maturation of precursor 10Sa RNA in Escherichia coli is a two-step process: the first reaction is catalyzed by RNase III in presence of Mn2+. Biochimie 72: 791–802

    Article  PubMed  CAS  Google Scholar 

  • Sundermeier TR, Dulebohn DP, Cho HJ, Karzai AW (2005) A previously uncharacterized role for small protein B (SmpB) in transfer messenger RNA-mediated trans-translation. Proc Natl Acad Sci USA 102: 2316–2321

    Article  PubMed  CAS  Google Scholar 

  • Sundermeier TR, Karzai AW (2007) Functional SmpB-ribosome interactions require tmRNA. J Biol Chem 282: 34 779–34 786

    Article  CAS  Google Scholar 

  • Sunohara T, Jojima K, Tagami H, Inada T, Aiba, H (2004 a) Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J Biol Chem 279: 15 368–15 375

    Article  CAS  Google Scholar 

  • Sunohara T, Jojima K, Yamamoto Y, Inada T, Aiba, H (2004b) Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA 10: 378–386

    Article  PubMed  CAS  Google Scholar 

  • Szaflarski W, Vesper O, Teraoka Y, Plitta B, Wilson DN, Nierhaus KH (2008) New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J Mol Biol 380: 193–205

    Article  PubMed  CAS  Google Scholar 

  • Takada K, Takemoto C, Kawazoe M, Konno T, Hanawa-Suetsugu K, Lee S, Shirouzu M, Yokoyama S, Muto A, Himeno, H (2007) In vitro trans-translation of Thermus thermophilus: ribosomal protein S1 is not required for the early stage of trans-translation. RNA 13: 503–510

    Article  PubMed  CAS  Google Scholar 

  • Tanner DR, Dewey JD, Miller MR, Buskirk AR (2006) Genetic analysis of the structure and function of transfer messenger RNA pseudoknot 1. J Biol Chem 281: 10 561–10 566

    Article  CAS  Google Scholar 

  • Tu GF, Reid GE, Zhang JG, Moritz RL, Simpson RJ (1995) C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J Biol Chem 270: 9322–9326

    Article  PubMed  CAS  Google Scholar 

  • Valle M, Gillet R, Kaur S, Henne A, Ramakrishnan V, Frank, J (2003) Visualizing tmRNA entry into a stalled ribosome. Science 300: 127–130

    Article  PubMed  CAS  Google Scholar 

  • Watts T, Cazier D, Healey D, Buskirk, A (2009) SmpB contributes to reading frame selection in the translation of transfer-messenger RNA. J Mol Biol 391: 275–281

    Article  PubMed  CAS  Google Scholar 

  • Weis F, Bron P, Rolland JP, Thomas D, Felden B, Gillet, R (2010) Accommodation of tmRNA-SmpB into stalled ribosomes: a cryo-EM study. RNA 16: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Williams KP (2000) The tmRNA website. Nucleic Acids Res 28: 168

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Bartel DP (1996) Phylogenetic analysis of tmRNA secondary structure. RNA 2: 1306–1310

    PubMed  CAS  Google Scholar 

  • Williams KP, Martindale KA, Bartel DP (1999) Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J 18: 5423–5433

    Article  PubMed  CAS  Google Scholar 

  • Wower IK, Zwieb C, Wower, J (2004) Contributions of pseudoknots and protein SmpB to the structure and function of tmRNA in trans-translation. J Biol Chem 279: 54 202–54 209

    Article  CAS  Google Scholar 

  • Wower IK, Zwieb C, Wower, J (2009) Escherichia coli tmRNA lacking pseudoknot 1 tags truncated proteins in vivo and in vitro. RNA 15: 128–137

    Article  PubMed  CAS  Google Scholar 

  • Wower IK, Zwieb CW, Guven SA, Wower, J (2000) Binding and cross-linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J 19: 6612–6621

    Article  PubMed  CAS  Google Scholar 

  • Wower J, Zwieb CW, Hoffman DW, Wower IK (2002) SmpB: a protein that binds to double-stranded segments in tmRNA and tRNA. Biochemistry 41: 8826–8836

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Sunohara T, Jojima K, Inada T, Aiba, H (2003) SsrA-mediated trans-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA 9: 408–418

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Blaustein JB, Bechhofer DH (2008) Erythromycin-induced ribosome stalling and RNase J1-mediated mRNA processing in Bacillus subtilis. Mol Microbiol 69: 1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Yusupova GZ, Yusupov MM, Cate JH, Noller HF (2001) The path of messenger RNA through the ribosome. Cell 106: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Zwieb C, Wower, J (2000) tmRDB (tmRNA database) Nucleic Acids Res 28: 169–170

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Healey, D., Miller, M., Woolstenhulme, C., Buskirk, A. (2011). The mechanism by which tmRNA rescues stalled ribosomes. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_29

Download citation

Publish with us

Policies and ethics